scholarly journals Distributed Approaches to Supply Chain Simulation

2021 ◽  
Vol 31 (4) ◽  
pp. 1-31
Author(s):  
Navonil Mustafee ◽  
Korina Katsaliaki ◽  
Simon J. E. Taylor

The field of Supply Chain Management (SCM ) is experiencing rapid strides in the use of Industry 4.0 technologies and the conceptualization of new supply chain configurations for online retail, sustainable and green supply chains, and the Circular Economy. Thus, there is an increasing impetus to use simulation techniques such as discrete-event simulation, agent-based simulation, and hybrid simulation in the context of SCM. In conventional supply chain simulation, the underlying constituents of the system like manufacturing, distribution, retail, and logistics processes are often modelled and executed as a single model. Unlike this conventional approach, a distributed supply chain simulation (DSCS) enables the coordinated execution of simulation models using specialist software. To understand the current state-of-the-art of DSCS, this paper presents a methodological review and categorization of literature in DSCS using a framework-based approach. Through a study of over 130 articles, we report on the motivation for using DSCS, the modelling techniques, the underlying distributed computing technologies and middleware, its advantages and a future agenda, and also limitations and trade-offs that may be associated with this approach. The increasing adoption of technologies like Internet-of-Things and Cloud Computing will ensure the availability of both data and models for distributed decision-making, which is likely to enable data-driven DSCS of the future. This review aims to inform organizational stakeholders, simulation researchers and practitioners, distributed systems developers and software vendors, as to the current state-of-the art of DSCS, and which will inform the development of future DSCS using new applied computing approaches.

Author(s):  
Jeffrey W. Hermann ◽  
Edward Lin ◽  
Guruprasad Pundoor

Simulation is a very useful tool for predicting supply chain performance. Because there are no standard simulation elements that represent accurately the activities in a supply chain, there exist a variety of approaches for developing supply chain simulation models. To improve this situation, this paper describes a novel supply chain simulation framework that follows the Supply Chain Operations Reference (SCOR) model. This framework has been used for building powerful simulation models that integrate discrete event simulation and spreadsheets. The simulation models are hierarchical and use submodels that capture activities specific to supply chains. The SCOR framework provides a basis for defining the level of detail in a way as to include as many features as possible, while not making them industry specific. This approach enables the reuse of submodels, which reduces development time. The paper describes the implementation of the simulation models and how the submodels interact during execution.


Silva Fennica ◽  
2018 ◽  
Vol 52 (4) ◽  
Author(s):  
Christoph Kogler ◽  
Peter Rauch

This review systematically analyses and classifies research and review papers focusing on discrete event simulation applied to wood transport, and therefore illustrates the development of the research area from 1997 until 2017. Discrete event simulation allows complex supply chain models to be mapped in a straightforward manner to study supply chain dynamics, test alternative strategies, communicate findings and facilitate understanding of various stakeholders. The presented analyses confirm that discrete event simulation is well-suited for analyzing interconnected wood supply chain transportation issues on an operational and tactical level. Transport is the connective link between interrelated system components of the forest products industry. Therefore, a survey on transport logistics allows to analyze the significance of entire supply chain management considerations to improve the overall performance and not only one part in isolation. Thus far, research focuses mainly on biomass, unimodal truck transport and terminal operations. Common shortcomings identified include rough explanations of simulation models and sparse details provided about the verification and validation processes. Research gaps exist concerning simulations of entire, resilient and multimodal wood supply chains as well as supply and demand risks. Further studies should expand upon the few initial attempts to combine various simulation methods with optimization.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255214
Author(s):  
Jad El Hage ◽  
Patti Gravitt ◽  
Jacques Ravel ◽  
Nadia Lahrichi ◽  
Erica Gralla

Testing is critical to mitigating the COVID-19 pandemic, but testing capacity has fallen short of the need in the United States and elsewhere, and long wait times have impeded rapid isolation of cases. Operational challenges such as supply problems and personnel shortages have led to these bottlenecks and inhibited the scale-up of testing to needed levels. This paper uses operational simulations to facilitate rapid scale-up of testing capacity during this public health emergency. Specifically, discrete event simulation models were developed to represent the RT-PCR testing process in a large University of Maryland testing center, which retrofitted high-throughput molecular testing capacity to meet pandemic demands in a partnership with the State of Maryland. The simulation models support analyses that identify process steps which create bottlenecks, and evaluate “what-if” scenarios for process changes that could expand testing capacity. This enables virtual experimentation to understand the trade-offs associated with different interventions that increase testing capacity, allowing the identification of solutions that have high leverage at a feasible and acceptable cost. For example, using a virucidal collection medium which enables safe discarding of swabs at the point of collection removed a time-consuming “deswabbing” step (a primary bottleneck in this laboratory) and nearly doubled the testing capacity. The models are also used to estimate the impact of demand variability on laboratory performance and the minimum equipment and personnel required to meet various target capacities, assisting in scale-up for any laboratories following the same process steps. In sum, the results demonstrate that by using simulation modeling of the operations of SARS-CoV-2 RT-PCR testing, preparedness planners are able to identify high-leverage process changes to increase testing capacity.


Author(s):  
Mohammad Barakat ◽  
Hiam Khoury ◽  
Mohamed-Asem Abdul-Malak

The unstructured and dynamic nature of construction projects and the on-site work complexities have been inevitably leading to claims. These evolve according to a staged mechanism set forth in the adopted conditions of contracts. More specifically, claims might progress expeditiously or drag depending on the nature of the applied mechanism and the behavior and interaction among contractual parties. As such, this complex problem of claim progression, which entails a lot of parameters and variables, is addressed in detail in this paper by resorting to three simulation techniques namely: (1) Discrete-Event Simulation (DES), (2) Agent-Based Modeling (ABM), and (3) System Dynamics (SD). The purpose behind this study is two-fold: (1) capturing and visualizing, through three different simulation models, the dynamic and interaction among the different entities as claims are progressing and defining the weak links hindering the efficiency improvement of such a process, and (2) comparing DES, ABM, and SD simulation approaches, using choose-by-advantage technique, and evaluating the advantages and drawbacks of each when studying the progression of claims. Results of all approaches are presented and analyzed followed by a discussion of the effectiveness of each simulation technique and the potential applicability of a hybrid approach in modeling the progression of claims.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Laura Macchion ◽  
Rosanna Fornasiero

PurposeSupply chain (SC) configuration has gained increased acceptance as an important issue when evaluating new customization possibilities and this evidence has contributed to the strengthening of the debate between global vs local production locations. This work contributes in enrichment of this topic by studying how local or global SC location decisions influence performances by considering a SC point of view, in terms of cost and time, in traditional and customized productions.Design/methodology/approachA discrete event simulation approach, based on experimentation through executable configurations, was used to evaluate different SC scenarios for customized as well as traditional products within the footwear industry.FindingsThe results indicated that to identify proper SC locations, existing trade-offs between the time and cost performances should be studied, avoiding the evaluation of a single performance independently and, instead, adopting a complete SC point of view while considering these performances.Research limitations/implicationsThis evidence has contributed to the reinforcement of the discussion between far-shore destinations vs near-shore production locations. Further studies are encouraged to adopt the present model, in which addition of other variables such as specific manufacturing competences to differentiate suppliers, both local and global suppliers, or the possibility of realizing special types of product customization required by final consumers can be done.Practical implicationsThe paper contributes to the academic and practitioners' debate by proposing a systemic approach to assess SCs’ performances in customized contexts and to compare them to traditional collections. Results indicate that cost and time performance must find a balance that does not necessarily correspond to an exclusively local or global production.Originality/valueThis work contributes to the SC configuration issue by considering the trade-off between efficiency and effectiveness (i.e. SC costs and SC times) for customized productions by reviving and enriching it with an SC perspective in customization contexts.


SIMULATION ◽  
2021 ◽  
pp. 003754972110309
Author(s):  
Mohd Shoaib ◽  
Varun Ramamohan

We present discrete-event simulation models of the operations of primary health centers (PHCs) in the Indian context. Our PHC simulation models incorporate four types of patients seeking medical care: outpatients, inpatients, childbirth cases, and patients seeking antenatal care. A generic modeling approach was adopted to develop simulation models of PHC operations. This involved developing an archetype PHC simulation, which was then adapted to represent two other PHC configurations, differing in numbers of resources and types of services provided, encountered during PHC visits. A model representing a benchmark configuration conforming to government-mandated operational guidelines, with demand estimated from disease burden data and service times closer to international estimates (higher than observed), was also developed. Simulation outcomes for the three observed configurations indicate negligible patient waiting times and low resource utilization values at observed patient demand estimates. However, simulation outcomes for the benchmark configuration indicated significantly higher resource utilization. Simulation experiments to evaluate the effect of potential changes in operational patterns on reducing the utilization of stressed resources for the benchmark case were performed. Our analysis also motivated the development of simple analytical approximations of the average utilization of a server in a queueing system with characteristics similar to the PHC doctor/patient system. Our study represents the first step in an ongoing effort to establish the computational infrastructure required to analyze public health operations in India and can provide researchers in other settings with hierarchical health systems, a template for the development of simulation models of their primary healthcare facilities.


2015 ◽  
Vol 26 (5) ◽  
pp. 632-659 ◽  
Author(s):  
Abdullah A Alabdulkarim ◽  
Peter Ball ◽  
Ashutosh Tiwari

Purpose – Asset management has recently gained significance due to emerging business models such as Product Service Systems where the sale of asset use, rather than the sale of the asset itself, is applied. This leaves the responsibility of the maintenance tasks to fall on the shoulders of the manufacturer/supplier to provide high asset availability. The use of asset monitoring assists in providing high availability but the level of monitoring and maintenance needs to be assessed for cost effectiveness. There is a lack of available tools and understanding of their value in assessing monitoring levels. The paper aims to discuss these issues. Design/methodology/approach – This research aims to develop a dynamic modelling approach using Discrete Event Simulation (DES) to assess such maintenance systems in order to provide a better understanding of the behaviour of complex maintenance operations. Interviews were conducted and literature was analysed to gather modelling requirements. Generic models were created, followed by simulation models, to examine how maintenance operation systems behave regarding different levels of asset monitoring. Findings – This research indicates that DES discerns varying levels of complexity of maintenance operations but that more sophisticated asset monitoring levels will not necessarily result in a higher asset performance. The paper shows that it is possible to assess the impact of monitoring levels as well as make other changes to system operation that may be more or less effective. Practical implications – The proposed tool supports the maintenance operations decision makers to select the appropriate asset monitoring level that suits their operational needs. Originality/value – A novel DES approach was developed to assess asset monitoring levels for maintenance operations. In applying this quantitative approach, it was demonstrated that higher asset monitoring levels do not necessarily result in higher asset availability. The work provides a means of evaluating the constraints in the system that an asset is part of rather than focusing on the asset in isolation.


2012 ◽  
Vol 32 (3) ◽  
pp. 543-560 ◽  
Author(s):  
Alexandre Ferreira de Pinho ◽  
José Arnaldo Barra Montevechi ◽  
Fernando Augusto Silva Marins ◽  
Rafael Florêncio da Silva Costa ◽  
Rafael de Carvalho Miranda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document