Analysis and optimisation of machinability behaviour of CFRP composites using fuzzy logic

2015 ◽  
Vol 44 (1) ◽  
pp. 48-55 ◽  
Author(s):  
M.P. Jenarthanan ◽  
R. Jeyapaul

Purpose – The purpose of this paper is to analyse and optimise the machinability behaviour of Carbon Fibre Reinforced Polymer (CFRP) composites with multiple performance characteristics using the Taguchi method with fuzzy logic. Design/methodology/approach – A multi-response performance index (MRPI) was used for optimisation. The machining parameters, viz., tool geometry (helix angle of the endmill cutter), spindle speed, feed rate and depth of cut, were optimised with consideration of multiple performance characteristics, viz., machining force and material removal rate. Findings – The results from confirmation runs indicated that the determined optimal combination of machining parameters improved the performance of the machining process. Originality/value – The machinability behaviour of CFRP composites during milling of CFRP composites using Taguchi method with fuzzy logic has not been previously analysed.

2015 ◽  
Vol 11 (1) ◽  
pp. 102-119 ◽  
Author(s):  
Jenarthanan Poornachary Mugundhu ◽  
Suresh Subramanian ◽  
Ajay Subramanian

Purpose – Glass fibre reinforced plastics (GFRP) contain two phases of materials with drastically distinguished mechanical and thermal properties, which brings in complicated interactions between the matrix and the reinforcement during machining. Surface quality and dimensional precision will greatly affect parts during their useful life especially in cases where the components will be in contact with other elements or materials during their useful life. The purpose of this paper is to discuss the application of the Taguchi method with fuzzy logic to optimise the machining parameters for machining of GFRP composites with multiple characteristics. Design/methodology/approach – The machining tests were performed on a CNC milling machine using solid carbide (K10) End mill cutting tool with three different helix angles. Experiments were planned using Taguchi’s orthogonal array with the cutting conditions prefixed. Findings – The machining parameters, namely, helix angle of the end mill cutter, spindle speed, feed rate, depth of cut, and work piece fibre orientation (specially applied to the GFRP composites) were optimised with considerations of multiple response characteristics, including machining force, material removal rate, and delamination. The results from confirmation runs indicated that the determined optimal combination of machining parameters improved the performance of the machining process. Originality/value – Multi-response optimisation of machinability behaviour of GFRP composites using fuzzy logic has not been attempted previously.


2017 ◽  
Vol 69 (3) ◽  
pp. 348-354
Author(s):  
Mohd Nor Azam Mohd Dali ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Sharudin Hassan

Purpose The purpose of this paper is to produce dimple structure on a cylindrical surface for Aluminium-Silicon (Al-Si) alloy piston (A390) using turning process. The process selection is based on factors such as the capability of machining process, low cost process, minimum set up time and green working environment. Design/methodology/approach Three main machining parameters that greatly influenced the dimple structure fabrication were identified from previous researches (cutting parameters, vibration and cutting tool geometry). To facilitate dimple structure fabrication using turning process, a dynamic assisted tooling (DATT) was developed. Experiments were conducted on Al-Si A390 material for future application of automotive piston. A three-dimensional surface profiler (Alicona) was used for geometry measurement and analysis of dimple structure. The Taguchi method, with an L8 orthogonal array, was used to accommodate seven parameters used in the fabrication of dimpled structures using turning process. Signal-to-noise (S/N) ratio and observation on the shape of dimple structure array were used to determine the optimum machining condition. Findings Optimum parameters obtained using S/N ratio analysis were cutting speed of 9 m/min, depth of cut of 0.01 mm, amplitude displacement of 1 mm, nose radius of 0.4 mm and frequency of (25 Hertz). Whereas feed rate, rake and relief angles were not significant to the size, shape and dimple array; therefore, their selected values depend on requirement of the application. Based on the S/N ratio and uniformity of the array of dimple structure as the main reference, the sixth and eighth experiment conditions almost achieved the optimum condition which are able to produce the width of dimple structure of 396.82 and 560.43 μm, respectively, dimple length of 3,261.6 and 2,422.7 μm, respectively, dimple depth of 63.43 and 65.97 μm, respectively, area ratio of 10 and 10.39 per cent, respectively, and surface roughness of 3.0023 and 3.0054 μm, respectively. These results are within the range of dimple structure obtained by the previous researchers for sliding mechanical components application. Originality/value The optimum condition of machining parameters in producing uniform dimple structure led to the compilation of data base in dimple structure research via turning process. Dimple structure produced is similarly obtained with other processes like laser, burnishing, photochemical, etc. DATT developed has the ability to produce repeatable vibration frequency, stable and consistent amplitude displacement using a simple crank concept and structure that can be mounted on all types of lathe machine either conventional or computer numerical control.


2019 ◽  
Vol 63 (2) ◽  
pp. 132-139
Author(s):  
Santosh Madival ◽  
Manjunath Lingappa Halappa ◽  
Mohammed Riyaz Ahmed ◽  
Lokesha Marulaiah

In the machining industry, coolant has an important role due to their lubrication, cooling and chip removal functions. Using coolant can improve machining process efficiency, tool life, surface quality and it can reduce cutting forces and vibrations. However, health and environmental problems are encountered with the use of coolants. Hence, there has been a high demand for deep cryogenic treatment to reduce these harmful effects. For this purpose, −196 °C LN2 gas is used to improve machining performance. This study focuses on the prediction of surface roughness and material removal rate with cryogenically treated M2 HSS tool using fuzzy logic and regression model. The turning experiments are conducted according to Taguchi's L9 orthogonal array. Surface roughness and material removal rate during machining of C45 steel with HSS tool are measured. Cutting speed, feed rate, and depth of cut are considered as machining parameters. A model depended on a regression model is established and the results obtained from the regression model are compared with the results based on fuzzy logic and experiment. The effectiveness of regression models and fuzzy logic has been determined by analyzing the correlation coefficient and by comparing experimental results. Regression model gives closer values to experimentally measured values than fuzzy logic. It has been concluded that regression-based modeling can be used to predict the surface roughness successfully.


Author(s):  
Durai Kumaran ◽  
S.P. Sundar Singh Sivam ◽  
Harshavardhana Natarajan ◽  
P.R. Shobana Swarna Ratna

In order to take advantage of the machining characteristics of magnesium, it is useful to consider recommended tool design and angles. The geometry of the tool can have a large influence on the machining process. Tool geometry can be used to aid with chip flow and clearance, reduce excessive heat generation, reduce tool build up, enable greater feed rates to be employed and improved tool life. This paper presents a new approach for the optimization of machining parameters on face milling of ZE41 with multiple responses based on orthogonal array with grey relational analysis. Machining tests are carried out by inserting 12 mm diameter of insert having 1 flute under dry condition. In this study, machining parameters namely cutting speed, feed and depth of cut and tool node radius are optimized with the considerations of multi responses such as surface roughness, material removal rate, tool wear and thrust force. A grey relational grade is obtained from the grey analysis. Based on the grey relational grade, optimum levels of parameters have been identified and significant contribution of parameters is determined by ANOVA. Confirmation test is conducted to validate the test result. Experimental results have shown that the responses in Machining process can be improved effectively through the new approach.


Author(s):  
A.K. Parida ◽  
K.P. Maity

In the present work DEA (data envelopment analysis) coupled with Taguchi method has used for optimization in process parameters of hot turning operation. An experimental investigation has been carried out to study the effect of cutting parameters such as speed, feed and depth of cut during. The material removal rate and surface finish, are to be studied with respect to machining at 450 temperature by heating Inconel 625. In order to achieve both quality and productivity, optimization of both is necessary simultaneously. DEA –Taguchi method can employed for solving in multi-response problem. LINGO software was used to find out the relative efficiency and converted to S/N ratio using MINITAB software. The optimization of the machining parameter found at 100 m/min cutting speed, 0.15 mm/rev feed rate and 1 mm depth of cut. Depth of cut is the most influencing parameter which affect both surface finish and material removal rate in the machining process.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2016 ◽  
Vol 12 (1) ◽  
pp. 177-193 ◽  
Author(s):  
M.P. Jenarthanan ◽  
A. Ram Prakash ◽  
R. Jeyapaul

Purpose – The purpose of this paper is to develop a mathematical model for metal removal rate and surface roughness through Taguchi method and analyse the influence of the individual input machining parameters (cutting speed, feed rate, helix angle, depth of cut and wt% on the responses in milling of aluminium-titanium diboride metal matrix composite (MMC) with solid carbide end mill cutter coated with nano-crystals. Design/methodology/approach – Taguchi OA is used to optimise the material removal rate (MRR) and Surface Roughness by developing a mathematical model. End Milling is used to create slots by combining various input parameters. Five factors, three-level Taguchi method is employed to carry out the experimental investigation. Fuzzy logic is used to find the optimal cutting factors for surface roughness (Ra) and MRR. The factors considered were weight percentage of TiB2, cutting speed, depth of cut and feed rate. The plan for the experiments and analysis was based on the Taguchi L27 orthogonal array with five factors and three levels. MINITAB 17 software is used for regression, S/N ratio and analysis of variance. MATLAB 7.10.0 is used to perform the fuzzy logics systems. Findings – Using fuzzy logics, multi-response performance index is generated, with which the authors can identify the correct combination of input parameters to get higher MRR and lower surface roughness value with the chosen range with 95 per cent confidence intervals. Using such a model, remarkable savings in time and cost can be obtained. Originality/value – Machinability characteristics in Al-TiB2 MMC based on the Taguchi method with fuzzy logic has not been analysed previously.


2020 ◽  
Author(s):  
waqas javaid ◽  
Tauqeer Iqbal ◽  
Ammar ul Hassan

Abstract High surface quality, optimum Material Removal Rate (MRR) and Tool-Chip Interface temperature (T c ) have significant importance in machining process. Similarly, dimensional accuracy in machining process also relies heavily on machining parameters. In machining operations, there are a number of parameters which have direct or indirect effect on the Surface Roughness (Ra) and MRR of the product. The surface roughness and MRR in turning process are affected by spindle speed (SS), feed rate (FR) and depth of cut (DOC). The optimization of turning parameters will be very helpful in improving quality of manufacturing and machining cost. In order to have an improved product, extensive research has been carried out to optimize machining process. The current research is focused at Response Surface Methodology (RSM) of turning process of Aluminum alloy (BS-1474 2014 A) by using variable sets of machining parameters i.e., SS, FR and DOC with carbide tipped tool. Multiple experiments were performed on CNC Lathe machine by using different combinations of process parameters. Response surface methodology was applied to reach theoretical values of the responses parameters (i.e, Ra, MRR, T c ) and an agreement was observed between actual machining results and methodology values. Design Expert-7 was used as a statistical tool to come to a conclusion on whether achieved results are optimum for turning process or otherwise. For a close correlation, comparison between hypothetical and investigational data is also the part of this research. Significant agreement between theoretically optimized machining parameters and experimental data has been observed.


2021 ◽  
Author(s):  
S. S Kulkarni ◽  
Sarika Sharma

This paper represents the optimization method utilized in machining process for figuring out the most advantageous manner design. Typically, the technique layout parameters in machining procedures are noticeably few turning parameters inclusive of reducing velocity, feed and depth. The optimization of speed, feed depth of cut is very tough because of several other elements associated with processing situations and form complexities like surface Roughness, material removal rate (MRR) that are based Parameters. On this task a new fabric glass fibre composite is introduced through which could lessen costing of manufacturing and time and additionally it will boom the technique of productiveness. Composite substances have strength, stiffness, light weight, which gives the large scope to engineering and technology. The proposed research work targets to analyze turning parameters of composite material. The machining parameters are very important in manufacturing industries. The present research work is optimized surface roughness of composite material specifically in turning procedure with the aid of changing parameter including intensity of reduce, slicing velocity and feed price and additionally expect the mechanical houses of composite material. The RSM optimization is important because it evaluates the effects of multiple factors and their interactions on one or more responsive variables. It is observed that the material removal rate increases and surface roughness decreases as per the increase of Spindle speed and feed rate.


2017 ◽  
Vol 13 (4) ◽  
pp. 612-627 ◽  
Author(s):  
Kanwal Jeet Singh ◽  
Inderpreet Singh Ahuja ◽  
Jathinder Kapoor

Purpose The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof glass and acrylic heat-resistant glass. The machining of these materials is a very tough job. There are so many constraints which need to be taken into account while machining, but without proper knowledge of material properties and machining parameters, machining is not possible. This paper gives basic knowledge about polycarbonate bulletproof and acrylic heat-resistant glass and provides ways as to how these types of materials are processed or machined. Design/methodology/approach The Taguchi method was utilized to optimize the ultrasonic machining parameters for drilling these advanced materials. The relationship between MRR and other controllable process parameters such as concentration of slurry, type of abrasive, abrasive grit size, power rating, concentration of HF acid and type of tool material has been analyzed by using the Taguchi approach. Findings Through the Taguchi analysis, it is concluded that types of abrasive and HF acid concentrations have a significant role to play in MRR for both materials; in which, type of abrasive have 72.91 and 72.96 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. Similarly, HF acid concentration has 14.70 and 14.65 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. The MRR was improved by 34.44 percent in polycarbonate bulletproof glass and 29.25 percent in acrylic heat-resistant glass. Originality/value After experimental investigation, the results of the Taguchi modal are validated.


Sign in / Sign up

Export Citation Format

Share Document