Investigation of dimensional accuracy of metal droplet deposition under repulsion using a lattice Boltzmann approach

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanlin Ren ◽  
Zhaomiao Liu ◽  
Yan Pang ◽  
Xiang Wang ◽  
Shanshan Gao

Purpose This paper aims to investigate the influence of droplet infiltration and sliding on the deposition size and make a uniform deposition by controlling the interaction between droplets, using the three-dimensional lattice Boltzmann method (LBM) based on the actual working condition. Design/methodology/approach D3Q19 Shan-Chen LB approach is developed and optimized based on the metal droplet deposition. The Carnahan-Starling equation of state and transition layers are introduced to maintain the greater stability and low pseudo velocities. In addition, an additional collision term is adopted to implement immersed moving boundary scheme to deal with no-slip boundaries on the front of the phase change. Findings The numerical results show that the new¬ incoming droplet wet and slide off the solidified surface and the rejection between droplets are the reasons for the deviation of the actual deposition length. The total length of the longitudinal section negatively correlates with the deposition distance. To improve the dimensional accuracy, the deposition distance and repulsion rate need to be guaranteed. The optimal deposition distance is found to have a negative linear correlation with wettability. Originality/value The numerical model developed in this paper will help predict the continuous metal droplet deposition and provide guidance for the selection of deposition distance.

2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Ashouri ◽  
Mohammad Mehdi Zarei ◽  
Ali Moosavi

Purpose The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver. Design/methodology/approach Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other. Findings It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing. Originality/value The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.


2019 ◽  
Vol 26 (2) ◽  
pp. 319-329 ◽  
Author(s):  
Paridhi Subbaian Kaliamoorthy ◽  
Rajkumar Subbiah ◽  
Joseph Bensingh ◽  
Abdul Kader ◽  
Sanjay Nayak

Purpose Additive manufacturing has paved a way for geometrical freedom and mass customization of new and innovative products. However, it has a few limitations in printing complex geometries and sizes. The purpose of this paper is three-dimensional printing of metal parts using selective laser melting (SLM) has several intricacies. Design/methodology/approach To test the capabilities of SLM, the complex geometries of varying sizes, orientations, shapes such as square and cylindrical features, thin wall structures and holes were checked for dimensional accuracy and surface roughness. Findings The outcome of the study represents the capabilities of SLM and provide insight for solving the technological issues and processing constraint in the manufacture of metal parts from aluminum alloy. The analysis has proven that there is significant accuracy in dimension for large features in comparison with smaller one. The dimensional reproducibility was determined with the aid of an optical measuring system and the range of errors were calculated. These results show that the dimensional accuracy of the features in the printed part was within acceptable tolerance limits. This paper also investigated the significant contributing factors influencing printing of two and three-dimensional surface roughness based on the result of surface profilometer and it was observed that the surface was smoothened with the presence of overhangs and supports. Originality/value The ability of SLM to fabricate conformer cooling channels to support mould fabrication was tested. From the experimental result, it was observed that the quality of printing of conformal cooling channels depended on the diameter of channels with larger distortions in the channel having smaller diameter. The innovative aspect of the work was the study of build orientation combined with the investigated material.


2012 ◽  
Vol 538-541 ◽  
pp. 890-894 ◽  
Author(s):  
Peng Yun Wang ◽  
He Jun Li ◽  
Le Hua Qi ◽  
Hai Liang Deng ◽  
Han Song Zuo

Droplet deposition and solidification is vital to dimensional accuracy and mechanical properties of components prepared by uniform droplet spray (UDS) forming. In this paper, a volume-of-fluid (VOF) based model was developed to study the deposition and solidification processes of a 1 mm Al-4.5%Cu droplet generated by drop-on-demand jetting. The effects of droplet falling velocity (0.6-0.8 m/s), initial temperature (933-973 K), and substrate temperature (300-473 K) were investigated. The results show that the final morphology of the deposited droplet is largely dependent on falling velocity and substrate temperature. The solidified droplet obtained from an UDS experiment validates the numerical simulation.


Author(s):  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Mohammad Mehdi Rashidi ◽  
Abimanyu Purusothaman

Purpose This study aims to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with CuO-water nanofluid. Design/methodology/approach The lattice Boltzmann method is used to solve the problem numerically. Two different multiple relaxation time (MRT) models are used to solve the problem. The D3Q7–MRT model is used to solve the temperature field, and the D3Q19 is used to solve the fluid flow of natural convection within the enclosure. Findings The influences of different Rayleigh numbers (103 < Ra < 106) and solid volume fractions (0 < f < 0.04) on the fluid flow, heat transfer, total entropy generation, local heat transfer irreversibility and local fluid friction irreversibility are presented comprehensively. To predict thermo–physical properties, dynamic viscosity and thermal conductivity, of CuO–water nanofluid, the Koo–Kleinstreuer–Li (KKL) model is applied to consider the effect of Brownian motion on nanofluid properties. Originality/value The originality of this work is to analyze the three-dimensional natural convection and entropy generation using a new numerical approach of dual-MRT-based lattice Boltzmann method.


2014 ◽  
Vol 20 (5) ◽  
pp. 413-421 ◽  
Author(s):  
I. Pires ◽  
B. Gouveia ◽  
J. Rodrigues ◽  
R. Fonte

Purpose – The purpose of this study is to characterize sintered hydroxyapatite (HA) samples produced by three-dimensional printing (3DP). This study is part of a project concerned with the fabrication of calcium phosphates implants by 3DP. However, before considering a more complex structure, like scaffolds or implants, a thorough knowledge of the role played by the sintering temperature on physical and mechanical the properties of porous HA is necessary. Design/methodology/approach – The characteristics of sintered HA samples have been analyzed by means of x-ray diffraction, scanning electron microscope (SEM) and uniaxial compression tests. The 3DP parameters used to produce the HA samples were those who led to higher accuracy and mechanical stability. Findings – Sintering temperature and powder morphology are critical factors influencing densification behavior, porosity, phase stability, mechanical strength and tangent modulus of the HA samples produced by 3DP. This study allowed us to conclude about the 3DP parameters to be used to produce porous HA specimens with the required integrity and dimensional accuracy, and the optimal post-processing sintering temperature which led to the best results in terms of porosity, microstructure, phase stability of HA and mechanical properties. Originality/value – This paper provides a method to evaluate the manufacturability of calcium phosphate models produced by 3DP.


2016 ◽  
Vol 22 (3) ◽  
pp. 474-486 ◽  
Author(s):  
Rajesh Kumar ◽  
Rupinder Singh ◽  
IPS Ahuja

Purpose The purpose of this paper is to investigate the process capability of three-dimensional printing (3DP)-based casting solutions for non-ferrous alloy (NFA) components. Design/methodology/approach After selection and design of benchmark, prototypes for six different NFA materials were prepared by using 3DP (ZCast process)-based shell moulds. Coordinate measuring machine has been used for calculating the dimensional tolerances of the NFA components. Consistency with the tolerance grades of the castings has been checked as per IT grades. Findings The results of process capability investigation highlight that the 3DP process as a casting solution for NFA component lies in ±5sigma (s) limit, as regards to dimensional accuracy is concerned. Further, this process ensures rapid production of pre-series industrial prototypes for NFA. Final components prepared are also acceptable as per ISO standard UNI EN 20,286-I (1995). Originality/value This research work presents capability of the 3DP process supported with experimental data on basis of various process parameters for the tolerance grade of NFA castings. These statistics can help to enhance the application of 3DP-based NFA casting process in commercial foundry industry.


2019 ◽  
Vol 25 (5) ◽  
pp. 915-924 ◽  
Author(s):  
Younss Ait Mou ◽  
Muammer Koc

Purpose This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused deposition modeling (FDM), stereolithography (SLA) and material jetting (MJ)] and four different equipment (FDM, SLA, MJP 2600 and Object 260) in terms of their dimensional process capability (dimensional accuracy and surface roughness). It provides a comprehensive and comparative understanding about the level of attainable dimensional accuracy, repeatability and surface roughness of commonly used 3DP technologies. It is expected that these findings will help other researchers and industrialists in choosing the right technology and equipment for a given 3DP application. Design/methodology/approach A benchmark model of 5 × 5 cm with several common and challenging features, such as around protrusion and hole, flat surface, micro-scale ribs and micro-scale long channels was designed and printed repeatedly using four different equipment of three different 3DP technologies. The dimensional accuracy of the printed models was measured using non-contact digital measurement methods. The surface roughness was evaluated using a digital profilometer. Finally, the surface quality and edge sharpness were evaluated under a reflected light ZEISS microscope with a 50× magnification objective. Findings The results show that FDM technology with the used equipment results in a rough surface and loose dimensional accuracy. The SLA printer produced a smoother surface, but resulted in the distortion of thin features (<1 mm). MJ printers, on the other hand, produced comparable surface roughness and dimensional accuracy. However, ProJet MJP 3600 produced sharper edges when compared to the Objet 260 that produced round edges. Originality/value This paper, for the first time, provides a comprehensive comparison of three different commonly used 3DP technologies in terms of their dimensional capability and surface roughness without farther post-processing. Thus, it offers a reliable guideline for design consideration and printer selection based on the target application.


2019 ◽  
Vol 36 (2) ◽  
pp. 691-706 ◽  
Author(s):  
Min Wang ◽  
Y.T. Feng ◽  
Ting T. Zhao ◽  
Yong Wang

Purpose Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation. Design/methodology/approach The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values. Findings It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured. Originality/value A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhengying Wei ◽  
HaiHua Wu ◽  
Guangxi Zhao

Metal droplet deposition is a kind of additive manufacturing (3D Printing) technique that fabricates near-net part through droplets deposition with lower cost and higher efficiency. This paper proposed a solution to problems of electric power fittings that large inventories, high procurement costs, low manufacturing efficiency and transportation cost. Using additive Manufacturing technique - metal droplet deposition, electric power fittings fabricated on power construction site. This paper describes the manufacturing process of typical thin-walled samples (the structure optimized based on additive manufacturing principle) and ball head rings of electric power fittings. Aiming at the integral AM forming for ball and ball socket electric power fitting workpiece, a novel easy removal forming support material (ceramics and gypsum mixed with UV cured resin) have been developed. Here this support material was used to fabricate nested integral workpieces. Dimensional accuracy and microstructure of the test pieces were analyzed. The error of the height and width of the forming workpiece is within 5%. No obvious overlap trace (such as overlap line and cracks) observed, and the internal microstructure is equiaxial crystal. The average density of the component is 99.51%, which measured by drainage method and 13.39% higher than the cast raw material.


Sign in / Sign up

Export Citation Format

Share Document