Normal Form and Control of the Hopf bifurcation

Author(s):  
Fernando Verduzco ◽  
Joaquin Alvarez ◽  
Armando Carrillo
2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation properties.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850062
Author(s):  
Olivier Verdier

Matrix pencils, or pairs of matrices, are used in a variety of applications. By the Kronecker decomposition theorem, they admit a normal form. This normal form consists of four parts, one part based on the Jordan canonical form, one part made of nilpotent matrices, and two other dual parts, which we call the observation and control part. The goal of this paper is to show that large portions of that decomposition are still valid for pairs of morphisms of modules or abelian groups, and more generally in any abelian category. In the vector space case, we recover the full Kronecker decomposition theorem. The main technique is that of reduction, which extends readily to the abelian category case. Reductions naturally arise in two flavors, which are dual to each other. There are a number of properties of those reductions which extend remarkably from the vector space case to abelian categories. First, both types of reduction commute. Second, at each step of the reduction, one can compute three sequences of invariant spaces (objects in the category), which generalize the Kronecker decomposition into nilpotent, observation and control blocks. These sequences indicate whether the system is reduced in one direction or the other. In the category of modules, there is also a relation between these sequences and the resolvent set of the pair of morphisms, which generalizes the regular pencil theorem. We also indicate how this allows to define invariant subspaces in the vector space case, and study the notion of strangeness as an example.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.


Author(s):  
Houye Liu ◽  
Weiming Wang

Amplitude equation may be used to study pattern formatio. In this chapter, we establish a new mechanical algorithm AE_Hopf for calculating the amplitude equation near Hopf bifurcation based on the method of normal form approach in Maple. The normal form approach needs a large number of variables and intricate calculations. As a result, deriving the amplitude equation from diffusion-reaction is a difficult task. Making use of our mechanical algorithm, we derived the amplitude equations from several biology and physics models. The results indicate that the algorithm is easy to apply and effective. This algorithm may be useful for learning the dynamics of pattern formation of reaction-diffusion systems in future studies.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950154 ◽  
Author(s):  
Jiazhe Lin ◽  
Rui Xu ◽  
Xiaohong Tian

Since the electromagnetic field of neural networks is heterogeneous, the diffusion phenomenon of electrons exists inevitably. In this paper, we investigate the existence of Turing–Hopf bifurcation in a reaction–diffusion neural network. By the normal form theory for partial differential equations, we calculate the normal form on the center manifold associated with codimension-two Turing–Hopf bifurcation, which helps us understand and classify the spatiotemporal dynamics close to the Turing–Hopf bifurcation point. Numerical simulations show that the spatiotemporal dynamics in the neighborhood of the bifurcation point can be divided into six cases and spatially inhomogeneous periodic solution appears in one of them.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


Author(s):  
Songhui Zhu ◽  
Pei Yu ◽  
Stacey Jones

Normal form theory is a powerful tool in the study of nonlinear systems, in particular, for complex dynamical behaviors such as stability and bifurcations. However, it has not been widely used in practice due to the lack of efficient computation methods, especially for high dimensional engineering problems. The main difficulty in applying normal form theory is to determine the critical conditions under which the dynamical system undergoes a bifurcation. In this paper a computationally efficient method is presented for determining the critical condition of Hopf bifurcation by calculating the Jacobian matrix and the Hurwitz condition. This method combines numerical and symbolic computation schemes, and can be applied to high dimensional systems. The Lorenz system and the extended Malkus-Robbins dynamo system are used to show the applicability of the method.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650181 ◽  
Author(s):  
Junhai Ma ◽  
Wenbo Ren

On the basis of our previous research, we deepen and complete a kind of macroeconomics IS-LM model with fractional-order calculus theory, which is a good reflection on the memory characteristics of economic variables, we also focus on the influence of the variables on the real system, and improve the analysis capabilities of the traditional economic models to suit the actual macroeconomic environment. The conditions of Hopf bifurcation in fractional-order system models are briefly demonstrated, and the fractional order when Hopf bifurcation occurs is calculated, showing the inherent complex dynamic characteristics of the system. With numerical simulation, bifurcation, strange attractor, limit cycle, waveform and other complex dynamic characteristics are given; and the order condition is obtained with respect to time. We find that the system order has an important influence on the running state of the system. The system has a periodic motion when the order meets the conditions of Hopf bifurcation; the fractional-order system gradually stabilizes with the change of the order and parameters while the corresponding integer-order system diverges. This study has certain significance to policy-making about macroeconomic regulation and control.


Sign in / Sign up

Export Citation Format

Share Document