Control of a high performance fighter aircraft using scheduled local nonlinear control laws

Author(s):  
Jianliang Wang ◽  
Sundararajan
Author(s):  
E Muir ◽  
A Bradshaw

Control laws have been designed for a high performance fighter aircraft using robust inverse dynamics estimation (RIDE) with the aim of providing good control at high angles of attack. This necessitates the use of thrust vectoring in flight conditions where aerodynamic control surfaces become ineffective. It is shown that the RIDE controller is able to transfer smoothly from using the aerodynamic surfaces to thrust vectoring during post-stall manoeuvring. The RIDE controller is structured so as to estimate the inverse dynamics of the aircraft and gives the designer freedom to assign the dynamics of the controlled states. Simulation results demonstrate that RIDE provides a simple method for the design of control laws which give specified response characteristics across the flight envelope and are robust to plant variations.


1999 ◽  
Author(s):  
Kevin A. Wise ◽  
Jack L. Sedwick ◽  
Yutaka Ikeda

Author(s):  
Withit Chatlatanagulchai ◽  
Peter H. Meckl

Flexibility at the joint of a manipulator is an intrinsic property. Even “rigid-joint” robots, in fact, possess a certain amount of flexibility. Previous experiments confirmed that joint flexibility should be explicitly included in the model when designing a high-performance controller for a manipulator because the flexibility, if not dealt with, can excite system natural frequencies and cause severe damage. However, control design for a flexible-joint robot manipulator is still an open problem. Besides being described by a complicated system model for which the passivity property does not hold, the manipulator is also underactuated, that is, the control input does not drive the link directly, but through the flexible dynamics. Our work offers another possible solution to this open problem. We use three-layer neural networks to represent the system model. Their weights are adapted in real time and from scratch, which means we do not need the mathematical model of the robot in our control algorithm. All uncertainties are handled by variable-structure control. Backstepping structure allows input efforts to be applied to each subsystem where they are needed. Control laws to adjust all adjustable parameters are devised using Lyapunov’s second method to ensure that error trajectories are globally uniformly ultimately bounded. We present two state-feedback schemes: first, when neural networks are used to represent the unknown plant, and second, when neural networks are used to represent the unknown parts of the control laws. In the former case, we also design an observer to enable us to design a control law using only output signals—the link positions. We use simulations to compare our algorithms with some other well-known techniques. We use experiments to demonstrate the practicality of our algorithms.


Author(s):  
Ho-Hoon Lee

This paper proposes a path planning strategy for high-performance anti-swing control of overhead cranes, where the anti-swing control problem is solved as a kinematic problem. First, two anti-swing control laws, one for hoisting up and the other for hoisting down, are proposed based on the Lyapunov stability theorem. Then a new path-planning strategy is proposed based on the concept of minimum-time control and the proposed anti-swing control laws. The proposed path planning is free from the usual constraints of small load swing, slow hoisting speed, and small hoisting distance. The effectiveness of the proposed path planning is shown by computer simulation with high hoisting speed and hoisting ratio.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 241 ◽  
Author(s):  
Arthur Rosa ◽  
Matheus Silva ◽  
Marcos Campos ◽  
Renato Santana ◽  
Welbert Rodrigues ◽  
...  

In this work, a new real-time Simulation method is designed for nonlinear control techniques applied to power converters. We propose two different implementations: in the first one (Single Hardware in The Loop: SHIL), both model and control laws are inserted in the same Digital Signal Processor (DSP), and in the second approach (Double Hardware in The Loop: DHIL), the equations are loaded in different embedded systems. With this methodology, linear and nonlinear control techniques can be designed and compared in a quick and cheap real-time realization of the proposed systems, ideal for both students and engineers who are interested in learning and validating converters performance. The methodology can be applied to buck, boost, buck-boost, flyback, SEPIC and 3-phase AC-DC boost converters showing that the new and high performance embedded systems can evaluate distinct nonlinear controllers. The approach is done using matlab-simulink over commodity Texas Instruments Digital Signal Processors (TI-DSPs). The main purpose is to demonstrate the feasibility of proposed real-time implementations without using expensive HIL systems such as Opal-RT and Typhoon-HL.


2021 ◽  
Vol 872 (1) ◽  
pp. 012010
Author(s):  
E A Shakhray ◽  
E V Lubentsova ◽  
V F Lubentsov ◽  
M V Meflekh

Aerospace ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
Mousumi Ahmed ◽  
Kamesh Subbarao

Sign in / Sign up

Export Citation Format

Share Document