A differential evolution SAF-DE algorithm which jumps out of local optimal

Author(s):  
HuChunAn ◽  
WenHao
2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110144
Author(s):  
Qianqian Zhang ◽  
Daqing Wang ◽  
Lifu Gao

To assess the inverse kinematics (IK) of multiple degree-of-freedom (DOF) serial manipulators, this article proposes a method for solving the IK of manipulators using an improved self-adaptive mutation differential evolution (DE) algorithm. First, based on the self-adaptive DE algorithm, a new adaptive mutation operator and adaptive scaling factor are proposed to change the control parameters and differential strategy of the DE algorithm. Then, an error-related weight coefficient of the objective function is proposed to balance the weight of the position error and orientation error in the objective function. Finally, the proposed method is verified by the benchmark function, the 6-DOF and 7-DOF serial manipulator model. Experimental results show that the improvement of the algorithm and improved objective function can significantly improve the accuracy of the IK. For the specified points and random points in the feasible region, the proportion of accuracy meeting the specified requirements is increased by 22.5% and 28.7%, respectively.


2014 ◽  
Vol 22 (01) ◽  
pp. 101-121 ◽  
Author(s):  
CHUII KHIM CHONG ◽  
MOHD SABERI MOHAMAD ◽  
SAFAAI DERIS ◽  
MOHD SHAHIR SHAMSIR ◽  
LIAN EN CHAI ◽  
...  

When analyzing a metabolic pathway in a mathematical model, it is important that the essential parameters are estimated correctly. However, this process often faces few problems like when the number of unknown parameters increase, trapping of data in the local minima, repeated exposure to bad results during the search process and occurrence of noisy data. Thus, this paper intends to present an improved bee memory differential evolution (IBMDE) algorithm to solve the mentioned problems. This is a hybrid algorithm that combines the differential evolution (DE) algorithm, the Kalman filter, artificial bee colony (ABC) algorithm, and a memory feature. The aspartate and threonine biosynthesis pathway, and cell cycle pathway are the metabolic pathways used in this paper. For three production simulation pathways, the IBMDE managed to robustly produce the estimated optimal kinetic parameter values with significantly reduced errors. Besides, it also demonstrated faster convergence time compared to the Nelder–Mead (NM), simulated annealing (SA), the genetic algorithm (GA) and DE, respectively. Most importantly, the kinetic parameters that were generated by the IBMDE have improved the production rates of desired metabolites better than other estimation algorithms. Meanwhile, the results proved that the IBMDE is a reliable estimation algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
V. Gonuguntla ◽  
R. Mallipeddi ◽  
Kalyana C. Veluvolu

Differential evolution (DE) is simple and effective in solving numerous real-world global optimization problems. However, its effectiveness critically depends on the appropriate setting of population size and strategy parameters. Therefore, to obtain optimal performance the time-consuming preliminary tuning of parameters is needed. Recently, different strategy parameter adaptation techniques, which can automatically update the parameters to appropriate values to suit the characteristics of optimization problems, have been proposed. However, most of the works do not control the adaptation of the population size. In addition, they try to adapt each strategy parameters individually but do not take into account the interaction between the parameters that are being adapted. In this paper, we introduce a DE algorithm where both strategy parameters are self-adapted taking into account the parameter dependencies by means of a multivariate probabilistic technique based on Gaussian Adaptation working on the parameter space. In addition, the proposed DE algorithm starts by sampling a huge number of sample solutions in the search space and in each generation a constant number of individuals from huge sample set are adaptively selected to form the population that evolves. The proposed algorithm is evaluated on 14 benchmark problems of CEC 2005 with different dimensionality.


Author(s):  
Pham Hoang Anh ◽  
Tran Thuy Duong

In this article, an efficient numerical approach for weight optimisation of functionally graded (FG) beams in the presence of frequency constraints is presented. For the analysis purpose, a finite element (FE) solution based on the first order shear deformation theory (FSDT) is established to analyse the free vibration behaviour of FG beams. A four-parameter power law distribution and a five-parameter trigonometric distribution are used to describe the volume fraction of material constituents in the thickness direction. The goal is to tailor the thickness and material distribution for minimising the weight of FG beams while constraining the fundamental frequency to be greater than a prescribed value. The constrained optimisation problem is effectively solved by a novel differential evolution (DE) algorithm. The validity and efficiency of the proposed approach is demonstrated through two numerical examples corresponding to the four-parameter distribution and the five-parameter distribution.Keywords: FGM beam; lightweight design; frequency constraint; differential evolution.


Author(s):  
Sotirios K. Goudos

Differential Evolution (DE) is a popular evolutionary algorithm that has been applied to several antenna design problems. However, DE is best suited for continuous search spaces. Therefore, in order to apply it to combinatorial optimization problems for antenna design a binary version of the DE algorithm has to be used. In this chapter, the author presents a design technique based on Novel Binary DE (NBDE). The main benefit of NBDE is reserving the DE updating strategy to binary space. This chapter presents results from design cases that include array thinning, phased array design with discrete phase shifters, and conformal array design with discrete excitations based on NBDE.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Monika Kumari ◽  
G. Sahoo

Cloud is a widely used platform for intensive computing, bulk storage, and networking. In the world of cloud computing, scaling is a preferred tool for resource management and performance determination. Scaling is generally of two types: horizontal and vertical. The horizontal scale connects users’ agreement with the hardware and software entities and is implemented physically as per the requirement and demand of the datacenter for its further expansion. Vertical scaling can essentially resize server without any change in code and can increase the capacity of existing hardware or software by adding resources. The present study aims at describing two approaches for scaling, one is a predator-prey method and second is genetic algorithm (GA) along with differential evolution (DE). The predator-prey method is a mathematical model used to implement vertical scaling of task for optimal resource provisioning and genetic algorithm (GA) along with differential evolution(DE) based metaheuristic approach that is used for resource scaling. In this respect, the predator-prey model introduces two algorithms, namely, sustainable and seasonal scaling algorithm (SSSA) and maximum profit scaling algorithm (MPSA). The SSSA tries to find the approximation of resource scaling and the mechanism for maximizing sustainable as well as seasonal scaling. On the other hand, the MPSA calculates the optimal cost per reservation and maximum sustainable profit. The experimental results reflect that the proposed logistic scaling-based predator-prey method (SSSA-MPSA) provides a comparable result with GA-DE algorithm in terms of execution time, average completion time, and cost of expenses incurred by the datacenter.


2018 ◽  
Vol 73 ◽  
pp. 13016
Author(s):  
Mara Huriga Priymasiwi ◽  
Mustafid

The management of raw material inventory is used to overcome the problems occuring especially in the food industry to achieve effectiveness, timeliness, and high service levels which are contrary to the problem of effectiveness and cost efficiency. The inventory control system is built to achieve the optimization of raw material inventory cost in the supply chain in food industry. This research represents Differential Evolution (DE) algorithm as optimization method by minimizing total inventory based on amount of raw material requirement, purchasing cost, saefty stock and reorder time. With the population size, the parameters of mutation control, crossover parameters and the number of iterations respectively 80, 0.8, 0.5, 200. With the amount of safety stock at the company 7213.95 obtained a total inventory cost decrease of 39.95%. Result indicate that the use of DE algorithm help providein efficient amount, time and cost.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Lijin Wang ◽  
Yiwen Zhong ◽  
Yilong Yin ◽  
Wenting Zhao ◽  
Binqing Wang ◽  
...  

The backtracking search optimization algorithm (BSA) is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE) algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.


Author(s):  
Ismail Yusuf ◽  
Ayong Hiendro ◽  
F. Trias Pontia Wigyarianto ◽  
Kho Hie Khwee

Differential evolution (DE) algorithm has been applied as a powerful tool to find optimum switching angles for selective harmonic elimination pulse width modulation (SHEPWM) inverters. However, the DE’s performace is very dependent on its control parameters. Conventional DE generally uses either trial and error mechanism or tuning technique to determine appropriate values of the control paramaters. The disadvantage of this process is that it is very time comsuming. In this paper, an adaptive control parameter is proposed in order to speed up the DE algorithm in optimizing SHEPWM switching angles precisely. The proposed adaptive control parameter is proven to enhance the convergence process of the DE algorithm without requiring initial guesses. The results for both negative and positive modulation index (<em>M</em>) also indicate that the proposed adaptive DE is superior to the conventional DE in generating SHEPWM switching patterns


Sign in / Sign up

Export Citation Format

Share Document