Real-time urban traffic information extraction from GPS tracking of a bus fleet

Author(s):  
Evangelos Denaxas ◽  
Savvas Mpollas ◽  
Dimitrios Vitsios ◽  
Christoforos Zolotas ◽  
Dimitris G. Bleris ◽  
...  
2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Rusmadi Suyuti

Traffic information condition is a very useful  information for road user because road user can choose his best route for each trip from his origin to his destination. The final goal for this research is to develop real time traffic information system for road user using real time traffic volume. Main input for developing real time traffic information system is an origin-destination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or road side interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the alternative of using traffic counts to estimate O-D matrices is particularly attractive. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of the approach is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods. The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Two types of demand models have been used: gravity (GR) and gravity-opportunity (GO) models. Four estimation methods have been analysed and tested to calibrate the transport demand models from traffic counts, namely: Non-Linear-Least-Squares (NLLS), Maximum-Likelihood (ML), Maximum-Entropy (ME) and Bayes-Inference (BI). The Bandung’s Urban Traffic Movement survey has been used to test the developed method. Based on several statistical tests, the estimation methods are found to perform satisfactorily since each calibrated model reproduced the observed matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and equilibrium assignment.  


2012 ◽  
Vol 6 (5) ◽  
pp. 547-559 ◽  
Author(s):  
Guangtao Xue ◽  
Ke Zhang ◽  
Qi He ◽  
Hongzi Zhu

2012 ◽  
Vol 588-589 ◽  
pp. 1058-1061
Author(s):  
Ting Zhang ◽  
Zhan Wei Song

With the sustained growth of vehicle ownerships, traffic congestion has become obstacle of urban development. In addition to developing public transport and accelerating the construction of rail transit, use scientific managing and controlling method in real-time monitoring traffic flow to divert the traffic stream is an effective way to solve urban traffic problems. In this paper, cross-correlation algorithm is used to obtain real-time traffic information, such as capacity and occupancy of a lane, so as to control traffic lights intelligently.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2686 ◽  
Author(s):  
Yue Chen ◽  
Wusheng Hu

The real-time vehicle detection and counting plays a crucial role in traffic control. To collect traffic information continuously, the access to information from traffic video shows great importance and huge advantages compared with traditional technologies. However, most current algorithms are not adapted to the effects of undesirable environments, such as sudden changes in illumination, vehicle shadows, and complex urban traffic conditions, etc. To address these problems, a new vehicle detection and counting method was proposed in this paper. Based on a real-time background model, the problem of sudden illumination changes could be solved, while the vehicle shadows could be removed using a detection method based on motion. The vehicle counting was built on two types of ROIs—called Normative-Lane and Non-Normative-Lane—which could adapt to the complex urban traffic conditions, especially for non-normative driving. Results have shown that the methodology we proposed is able to count vehicles with 99.93% accuracy under the undesirable environments mentioned above. At the same time, the setting of the Normative-Lane and the Non-Normative-Lane can realize the detection of non-normative driving, and it is of great significance to improve the counting accuracy.


Sign in / Sign up

Export Citation Format

Share Document