Inductance to DC resistance ratio optimization of on-chip closed-core spiral power inductors

Author(s):  
Shujie Chen ◽  
Yunkun Li ◽  
Rongxiang Wu
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3234
Author(s):  
Insun Shin ◽  
Kyoungmin Koo ◽  
Daeil Kwon

Electronic products and systems are widely used in industrial network systems, control devices, and data acquisition devices across many industry sectors. Failures of such electronic systems might lead to unexpected downtime, loss of productivity, additional work for repairs, and delay in product and service development. Thus, developing an appropriate sensing technique is necessary, because it is the first step in system fault diagnosis and prognosis. Many sensing techniques often require external and additional sensing devices, which might disturb system operation and consequently increase operating costs. In this study, we present an on-chip health sensing method for non-destructive and non-invasive interconnect degradation detection. Bit error rate (BER), which represents data integrity during digital signal transmission, was selected to sense interconnect health without connecting external sensing devices. To verify the health sensing performance, corrosion tests were conducted with in situ monitoring of the BER and direct current (DC) resistance. The eye size, extracted from the BER measurement, showed the highest separation between the intact and failed interconnect, as well as a gradual transition, compared with abrupt changes in the DC resistance, during interconnect degradation. These experimental results demonstrate the potential of the proposed sensing method for on-chip interconnect health monitoring applications without disturbing system operation.


Author(s):  
Manot Mapato ◽  
Prapong Klysuban ◽  
Thanatchai Kulworawanichpong ◽  
Nimit Chomnawang

This work presents a new fabrication technique for micro power inductors by using metal-embedded SU-8 slab molding techniques. The proposed technique uses X-ray lithography to fabricate high-aspect-ratio LIGA-like microstructures in form of embedded structures in the SU-8 slab. This process was applied to fabricate an inductor’s windings with an aspect ratio of 10, which can provide very low resistance but still preserve a small form factor and low profile. Inductors were designed as pot-core structures with overall heights of 370 μm and embedded with 250-μm-thick windings. From the advantage of metal embedded SU-8 slab techniques, 8 μm-thick permalloy core could be fabricated by electroplating around the winding in a single step that could help simplify the process. Four types of inductors were fabricated with 3, 5, 10, and 16 turns in the area of 1.8 to 9.5 mm2. The measured inductance was in the range of 70 nH to 1.3 μH at 1 MHz and DC resistance of 30–336 mΩ for 3–16 turns, respectively. The DC resistance of fabricated inductor was low, as expected, and showed good result compared with the results in literature.


Author(s):  
Yuhan He ◽  
Luo Wang ◽  
Yicheng Wang ◽  
Huaiwu Zhang ◽  
Zhiyong Zhong ◽  
...  

2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document