A novel piecewise Anti-Windup design for speed loop PI controller of PMSM servo system

Author(s):  
Ming Yang ◽  
Li Niu ◽  
Dian-guo Xu
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3146
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Dongyang Shang ◽  
Xingchao Qu

With the development of robot technology, integrated joints with small volume and convenient installation have been widely used. Based on the double inertia system, an integrated joint motor servo system model considering gear angle error and friction interference is established, and a joint control strategy based on BP neural network and pole assignment method is designed to suppress the vibration of the system. Firstly, the dynamic equation of a planetary gear system is derived based on the Lagrange method, and the gear vibration of angular displacement is calculated. Secondly, the vibration displacement of the sun gear is introduced into the motor servo system in the form of the gear angle error, and the double inertia system model including angle error and friction torque is established. Then, the PI controller parameters are determined by pole assignment method, and the PI parameters are adjusted in real time based on the BP neural network, which effectively suppresses the vibration of the system. Finally, the effects of friction torque, pole damping coefficient and control strategy on the system response and the effectiveness of vibration suppression are analyzed.


2011 ◽  
Vol 317-319 ◽  
pp. 1974-1978
Author(s):  
Ling Lin Kong ◽  
Duan Neng Li ◽  
Ke Li

Positioning accuracy of servo feed unit makes an important effect to processing precision in CNC machine tools. The effects in positioning accuracy mainly are the precisions of mechanism and servo system. And the actions of tuning controller gains should directly affect the servo system precision. This paper, a servo system model and its P/PI controller has been formulated and simulated, using an AC servo feed unit as a tested. Through tuning gains of P/PI controller, analyses and control the effects for the feed unit positioning accuracy. Ultimately, experiments have been carried out to test feed unit by laser interferometer. Its shows that tuning gains of P/PI controller, which given in paper, has effectively improved the positioning accuracy of servo feed unit.


2015 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Adnan Jabbar Attiya ◽  
Yang Wenyu ◽  
Salam Waley Shneen

<p>By grinding process, when an industrial robot is used to finish a curved surface, both feed movement and contact force must controlled at the similar time in order that the grinding tool would machine the work-piece at  the  right  position  in  right  posture with  required  force. A passive wrist system is advanced, in this paper, to conform the shape of the machining propeller by altering its posture along with the surface. The proportional-integral (PI) controller, due to its simplicity, robustness, and affordable price, is extremely often used in practical applications, but it is effective for linear systems, as well as, the challenging task is to find its optimal gains. If the processes involved higher order and time delay systems, many intelligent controllers were appeared. In this paper, to cope with nonlinearities, improve the controller parameters and at the same time modeling uncertainties of grinding marine propeller surface, a PI torque controller is proposed such that its optimal gains are derived via a modern systems based on fuzzy logic theory and particle swarm optimization algorithm which are used to solve various engineering problems. Grinding force is controlled under Fuzzy-PI controller which is being assembled and compared with a PSO-PI controller to obtain which controller that provides grinding with higher quality. The compared controllers have been optimized together with the parameters of the Two-Phase Hybrid Stepping Motor. The suggested fuzzy rule function and PSO algorithm improve the response of the controlled system and searches a high-quality solution impressively. Simulation and comparison results are presented and that the proposed control systems are coping well with nonlinearities and uncertainties while find PI control parameter set effectively, the PSO-PI controller has a better control performance with improved step response for robotic grinding force servo system. These control methods was simulated using MATLAB/SIMULINK.</p>


Sign in / Sign up

Export Citation Format

Share Document