Comparison of proposed source degeneration and conventional D-latch without tail current source QVCO in 0.18 µm CMOS technology

Author(s):  
P. Arivazhagan ◽  
T. K. Bhattacharyya
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 91325-91336 ◽  
Author(s):  
Pravinah Shasidharan ◽  
Harikrishnan Ramiah ◽  
Jagadheswaran Rajendran

2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Orazio Aiello

The paper deals with the immunity to Electromagnetic Interference (EMI) of the current source for Ultra-Low-Voltage Integrated Circuits (ICs). Based on the properties of IC building blocks, such as the current-splitter and current correlator, a novel current generator is conceived. The proposed solution is suitable to provide currents to ICs operating in the sub-threshold region even in the presence of an electromagnetic polluted environment. The immunity to EMI of the proposed solution is compared with that of a conventional current mirror and evaluated by analytic means and with reference to the 180 nm CMOS technology process. The analysis highlights how the proposed solution generates currents down to nano-ampere intrinsically robust to the Radio Frequency (RF) interference affecting the input of the current generator, differently to what happens to the output current of a conventional mirror under the same conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Neeta Pandey ◽  
Bharat Choudhary ◽  
Kirti Gupta ◽  
Ankit Mittal

This paper proposes new positive feedback source coupled logic (PFSCL) tristate buffers suited to bus applications. The proposed buffers use switch to attain high impedance state and modify the load or the current source section. An interesting consequence of this is overall reduction in the power consumption. The proposed tristate buffers consume half the power compared to the available switch based counterpart. The issues with available PFSCL tristate buffers based bus implementation are identified and benefits of employing the proposed tristate buffer topologies are put forward. SPICE simulation results using TSMC 180 nm CMOS technology parameters are included to support the theoretical formulations. The performance of proposed tristate buffer topologies is examined on the basis of propagation delay, output enable time, and power consumption. It is found that one of the proposed tristate buffer topology outperforms the others in terms of all the performance parameters. An examination of behavior of available and the proposed PFSCL tristate buffer topologies under parameter variations and mismatch shows a maximum variation of 14%.


2015 ◽  
Vol 32 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Soo-Woo Kim ◽  
Ho-Yong Choi ◽  
Sehyuk An ◽  
Nam-Soo Kim

Purpose – This paper aims to design the circuit for electromagnetic interface (EMI) reduction in liquid crystal display (LCD). Design/methodology/approach – The cascode level shifter and segmented driver circuit are applied in LCD column driver integrated circuit (IC) for EMI reduction. Cascode current mirror is used in the proposed level shifter for DC voltage biasing and reduction of the driving current which passes through the level shifter. The on-off switching currents and transient times are measured and compared between the conventional and proposed level shifters. Additionally, a segmented data latch is obtained by the timing spread solution in data latch, and applied to split the large peak switching current into a number of smaller peak current. The timing spread-operation does not actually reduce the total power of the noise, instead, it spreads the noise power evenly over the frequency bandwidth. The optimal number of latch is dependent on the operating frequency and EMI allowance. The column driver IC and clock controller are integrated in 0.18 μm CMOS technology with 1-poly and 4-metal process. Findings – The post-layout simulation shows that the proposed column driver circuit for LCD driver IC significantly reduces the peak switching current, and it results in the reduction of EMI noise level by more than 15 dB. It is obtained with 20 segmented operations in data latch at 40 MHz frequency. Originality/value – The advantage of the cascode current source is that it can provide a well-controlled bias current with an accurate current transfer ratio. To reduce the EMI noise in LCD driver circuit, the cascode current source is properly located for the DC bias block in the level shifter. The application is rarely done by others, and a significant EMI noise reduction is found. The well-controlled current source provides a high performance switching in the level shifter.


2018 ◽  
Vol 28 (02) ◽  
pp. 1950027 ◽  
Author(s):  
Dhara P Patel ◽  
Shruti Oza-Rahurkar

A novel tuning principle for simple gyrator-based CMOS active inductor (AI) circuit is presented. The method makes use of Widlar current source to enhance the quality factor. The simulation of the proposed AI provides a maximum quality factor of 1819 at 2.88[Formula: see text]GHz. The AI shows the inductive bandwidth of 1.66[Formula: see text]GHz to 3.16[Formula: see text]GHz and power consumption of 6.87[Formula: see text]mW. The other characterization factors such as linearity, supply voltage sensitivity and noise analysis are discussed. The performance of the tunable AI using Widlar current source are compared with the same using a simple current mirror. An AI using a conventional current mirror (CCM) and Widlar current source have been implemented in the 0.18[Formula: see text][Formula: see text]m CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document