Abstract
The demands of electronic packages toward lower profile, lighter weight, and higher density of I/O lead to rapid expansion in the field of flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent needs of high I/O density and good reliability characteristic lead to the evolution of the ultra high-density type of non-solder interconnection such as the wire interconnect technology (WIT). The new technology using copper posts to replace the solder bumps as interconnections shown a great improvement in the reliability life. Moreover, this type of wafer level package could achieve higher I/O density, as well as ultra fine pitch. This research will focus on the reliability analysis of the WIT package structures in material selection and structural design, etc. This research will use finite element method to analyze the physical behavior of packaging structures under thermal cycling condition to compare the reliability characteristics of conventional wafer level package and WIT packages. Parametric studies of specific parameters will be performed, and the plastic and temperature dependent material properties will be applied to all of the models.