High etch rate and low temperature InP backside via etching using HI-based inductively coupled plasma

Author(s):  
K. Kotani ◽  
T. Kawasaki ◽  
T. Miyazaki ◽  
S. Yaegassi ◽  
H. Yano
2013 ◽  
Vol 740-742 ◽  
pp. 825-828 ◽  
Author(s):  
Jerome Biscarrat ◽  
Jean François Michaud ◽  
Emmanuel Collard ◽  
Daniel Alquier

Due to its inert chemical nature, plasma etching is the most effective technique to pattern SiC. In this paper, dry etching of 4H-SiC substrate in Inductively Coupled Plasma (ICP) has been studied in order to evaluate the impact of process parameters on the characteristics of etching such as etch rate and trenching effect. Key process parameters such as platen power and ICP coil power prove to be essential to control the SiC etch rate. On the other hand, the ICP coil power and the working pressure mainly master the trenching effect. Our results enlighten that high etch rate with minimal trenching effect can be obtained using high ICP coil power and low working pressure.


2008 ◽  
Vol 1108 ◽  
Author(s):  
Xiaoyan Xu ◽  
Vladimir Kuryatkov ◽  
Boris Borisov ◽  
Mahesh Pandikunta ◽  
Sergey A Nikishin ◽  
...  

AbstractThe effect of BCl3 and BCl3/Ar pretreatment on Cl2/Ar and Cl2/Ar/BCl3 dry etching of AlN is investigated using inductively coupled plasma reactive ion etching. The native AlN oxide can be effectively removed by a short exposure to BCl3 or BCl3/Ar plasma. Compared to the chlorine based plasma etching, BCl3/Ar is found to have the highest etch rate for both AlN and its native oxide. Following removal of the native oxide, Cl2/Ar/BCl3 plasma etching with 15% BCl3 fraction results in a high etch rate ˜ 87 nm/min and modest increases in the surface roughness.


2013 ◽  
Vol 721 ◽  
pp. 346-349
Author(s):  
Zhi Qin Zhong ◽  
Cheng Tao Yang ◽  
Guo Jun Zhang ◽  
Shu Ya Wang ◽  
Li Ping Dai

Dry etching of Pt/Ti film was carried out using Cl2/Ar plasmas in an inductively coupled plasma (ICP) reactor. The influence of the various process parameters, such as RIE power, ICP power and Cl2/Ar gas mixing ratio, on the etch rate and selectivity of photoresist to Pt/Ti film were investigated systematically and optimized. It was revealed that the etch rate and the selectivity strongly depended on the key process parameters. The etch rate was found to increase dramatically with increasing of RIE power and ICP power. But by changing the ratio of Cl2 to the total gas, the maximum etch rate could be obtained at the proper ratio of 20%. The results also indicated too low or too high RIE power and the Cl2 ratio was detrimental to the selectivity. The optimized parameters of Pt/Ti dry etching for high etch rate and low selectivity of photoresist to Pt/Ti were obtained to be pressure: 10mT, RF power: 250W, ICP power: 0W, Cl2: 8sccm (standard cubic centimeters per minute), Ar: 32sccm.


2010 ◽  
Vol 205 ◽  
pp. S227-S230 ◽  
Author(s):  
Kyung S. Shin ◽  
Yoon S. Choi ◽  
In S. Choi ◽  
Y. Setsuhara ◽  
Jeon G. Han

1999 ◽  
Vol 573 ◽  
Author(s):  
J. W. Lee ◽  
K. D. Mackenzie ◽  
D. Johnson ◽  
S. J. Pearton ◽  
F. Ren ◽  
...  

ABSTRACTHigh-density plasma technology is becoming increasingly attractive for the deposition of dielectric films such as silicon nitride and silicon dioxide. In particular, inductively-coupled plasma chemical vapor deposition (ICPCVD) offers a great advantage for low temperature processing over plasma-enhanced chemical vapor deposition (PECVD) for a range of devices including compound semiconductors. In this paper, the development of low temperature (< 200°C) silicon nitride and silicon dioxide films utilizing ICP technology will be discussed. The material properties of these films have been investigated as a function of ICP source power, rf chuck power, chamber pressure, gas chemistry, and temperature. The ICPCVD films will be compared to PECVD films in terms of wet etch rate, stress, and other film characteristics. Two different gas chemistries, SiH4/N2/Ar and SiH4/NH3/He, were explored for the deposition of ICPCVD silicon nitride. The ICPCVD silicon dioxide films were prepared from SiH4/O2/Ar. The wet etch rates of both silicon nitride and silicon dioxide films are significantly lower than films prepared by conventional PECVD. This implies that ICPCVD films prepared at these low temperatures are of higher quality. The advanced ICPCVD technology can also be used for efficient void-free filling of high aspect ratio (3:1) sub-micron trenches.


Sign in / Sign up

Export Citation Format

Share Document