Cascading Application of all Optical Universal NAND Gate for Implementation of Basic Logic Gates

Author(s):  
Ankur Saharia ◽  
Ashish Kumar Ghunawat ◽  
Anton V. Bourdine ◽  
Ravi Kumar Maddila ◽  
Manish Tiwari ◽  
...  
2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


Silicon ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1279-1288 ◽  
Author(s):  
Gaurav Kumar Bharti ◽  
Madan Pal Singh ◽  
Jayanta Kumar Rakshit

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ankur Saharia ◽  
Ashish Kumar Ghunawat ◽  
Manish Tiwari ◽  
Anton V. Bourdine ◽  
Vladimir A. Burdin ◽  
...  

AbstractAll-optical processor capable of processing optical bits has been a long-standing goal of photonics. In this paper, we report the results obtained by numerical simulations regarding the designing of an all-optical combinational circuit of an adder and subtractor circuits based on Si3N4 microring resonators. The designs of combinational circuit like adders and subtractor based on the use of all-optical basic logic gates are discussed while presenting the numerically simulated results. Extinction ratios of 5.2 dB, 3.5 dB and 2.7 dB are obtained for the half adder, full adder and half subtractor, respectively.


2021 ◽  
Author(s):  
Sandip Swarnakar ◽  
Siva Koti Reddy ◽  
Ramanand Harijan ◽  
Santosh Kumar

Abstract All the basic logic gates play a major role in carrying out the mathematical computation. The drawbacks of conventional electronics are alleviated by all-optical integrated circuits with a great application of high-speed computing and information processing. In this paper, plasmonic metal-insulator-metal (MIM) waveguides have an excellent property of propagating the surface plasmons beyond the diffraction limit up to deep sub-wavelength scale. All-optical NAND gate design is optimized by using MIM plasmonic waveguide-based Mach-Zehnder Interferometers (MZIs) in the footprint of 36 µm × 8 µm that works at 1.55 µm operating wavelength. The better performance of the proposed device is achieved, such as the extinction ratio is 10.55 dB, insertion loss is obtained as 0.506 dB, and response time is 262 ps. The proposed design is verified by using the finite-difference time-domain (FDTD) technique and further analysis are carried out by mathematical computation and MATLAB simulation results.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction for all optical NAND gate based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2021 ◽  
pp. 34-43
Author(s):  
Saif Al-Tameemi ◽  
Mohammed Nadhim Abbas

Though photonics displays an attractive solution to the speed limitation of electronics, decreasing the size of photonic devices is one of the major problems with implementing  photonic integrated circuits that are regarded the challenges to produce all-optical computers. Plasmonic can solve these problems, it be a potential solution to fill the gaps in the electronics (large bandwidth and ultra-high speed) and photonics (diffraction limit due to miniaturization size). In this paper, Nano-rings Insulator-Metal-Insulator (IMI) plasmonic waveguides has been used to propose, design, simulate, and perform all-optical universal logic gates (NOR and NAND gates). By using Finite Element Method (FEM), the structure of the proposed plasmonic universal logic gates are designed and numerically simulated by two dimensions (2-D) structure. Silver and Glass materials were chosen to construct proposed structure. The function of the proposed plasmonic NOR and NAND logic gates was achieved by destructive and constructive interferences principle. The performance of the proposed device is measured by three criteria; the transmission, extension ratio, and modulation depth. Numerical simulations show that a transmission threshold (0.3) which allows achieving the proposed plasmonic universal logic gates in one structure at 1550 nm operating wavelength. The properties of this devise was as follows: The transmission exceeds 100% in one state of NAND gate, medium values of Extension Ratio, very high MD values, and very small foot print. In the future, this device will be the access to the nanophotonic integrated circuits and it has regarded fundamental building blocks for all-optical computers.  


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


Sign in / Sign up

Export Citation Format

Share Document