Reliability Assessment of Spring Based on Two Degradation Modeling Methods

Author(s):  
Ming Yuan ◽  
Hong-Jie Yuan ◽  
Ru-Yuan Xu ◽  
Qian-Yuan Wang
2013 ◽  
Vol 873 ◽  
pp. 642-651
Author(s):  
Tao Hong Zhang ◽  
Shou Gang Xu ◽  
De Zheng Zhang ◽  
Aziguli Wulamu

Although the degradation modeling of tissue engineering scaffold is in its initial step, it can direct the design, optimization of scaffold and help the application in medical case of illness. This paper analyzes the modeling methods and gives the speciality of every model which is put forward by researchers in China and abroad about the degradation of tissue engineering scaffold. These models are divided into micro scale, macro scale and two scale models based on the modeling scales. The recent research is belonging to single scale modeling. Some researchers abroad probed to two scale modeling. The future model is prospected in multi scale coupling macro, micro, and meta-macro model.


Author(s):  
Anunay Gupta ◽  
Om Prakash Yadav ◽  
Arighna Roy ◽  
Douglas DeVoto ◽  
Joshua Major

Abstract The degradation of capacitors under accelerated stress conditions occur in a monotonic and non-linear fashion. Several efforts have been made to model the degradation behavior of capacitor considering either physics-of-failure models or statistical models and subsequently estimate its reliability and lifetime parameters. But most of these models fail to reflect the physical properties of the degradation path, which varies according to several intrinsic and extrinsic factors. These factors introduce random and temporal uncertainty among the population of capacitors. The gamma stochastic process can model both type of uncertainties among the population of capacitors. In this paper, we model the capacitor degradation by non-homogeneous gamma stochastic process in which both the model parameters (shape and scale) are dependent on stress variables. The model parameters are estimated using the maximum likelihood estimation approach.


2021 ◽  
Vol 11 (9) ◽  
pp. 4133
Author(s):  
Luis Alberto Rodríguez-Picón ◽  
Luis Carlos Méndez-González ◽  
Roberto Romero-López ◽  
Iván J. C. Pérez-Olguín ◽  
Manuel Iván Rodríguez-Borbón ◽  
...  

In most degradation tests, the measuring processes is affected by several conditions that may cause variation in the observed measures. As the measuring process is inherent to the degradation testing, it is important to establish schemes that define a certain level of permissible measurement error such that a robust reliability estimation can be obtained. In this article, an approach to deal with measurement error in degradation processes is proposed, the method focuses on studying the effect of such error in the reliability assessment. This approach considers that the true degradation is a function of the observed degradation and the measurement error. As the true degradation is not directly observed it is proposed to obtain an estimate based on a deconvolution operation, which considers the subtraction of random variables such as the observed degradation and the measurement error. Given that the true degradation is free of measurement error, the first-passage time distribution will be different from the observed degradation. For the establishment of a control mechanism, these two distributions are compared using different indices, which account to describe the differences between the observed and true degradation. By defining critical levels of these indices, the reliability assessment may be obtained under a known level of measurement error. An illustrative example based on a fatigue-crack growth dataset is presented to illustrate the applicability of the proposed scheme, the reliability assessment is developed, and some important insights are provided.


2021 ◽  
Vol 506 ◽  
pp. 230071
Author(s):  
L. Vichard ◽  
N. Yousfi Steiner ◽  
N. Zerhouni ◽  
D. Hissel

Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


Sign in / Sign up

Export Citation Format

Share Document