Degradation Modeling and Reliability Assessment of Capacitors

Author(s):  
Anunay Gupta ◽  
Om Prakash Yadav ◽  
Arighna Roy ◽  
Douglas DeVoto ◽  
Joshua Major

Abstract The degradation of capacitors under accelerated stress conditions occur in a monotonic and non-linear fashion. Several efforts have been made to model the degradation behavior of capacitor considering either physics-of-failure models or statistical models and subsequently estimate its reliability and lifetime parameters. But most of these models fail to reflect the physical properties of the degradation path, which varies according to several intrinsic and extrinsic factors. These factors introduce random and temporal uncertainty among the population of capacitors. The gamma stochastic process can model both type of uncertainties among the population of capacitors. In this paper, we model the capacitor degradation by non-homogeneous gamma stochastic process in which both the model parameters (shape and scale) are dependent on stress variables. The model parameters are estimated using the maximum likelihood estimation approach.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Helena Mouriño ◽  
Maria Isabel Barão

Missing-data problems are extremely common in practice. To achieve reliable inferential results, we need to take into account this feature of the data. Suppose that the univariate data set under analysis has missing observations. This paper examines the impact of selecting an auxiliary complete data set—whose underlying stochastic process is to some extent interdependent with the former—to improve the efficiency of the estimators for the relevant parameters of the model. The Vector AutoRegressive (VAR) Model has revealed to be an extremely useful tool in capturing the dynamics of bivariate time series. We propose maximum likelihood estimators for the parameters of the VAR(1) Model based on monotone missing data pattern. Estimators’ precision is also derived. Afterwards, we compare the bivariate modelling scheme with its univariate counterpart. More precisely, the univariate data set with missing observations will be modelled by an AutoRegressive Moving Average (ARMA(2,1)) Model. We will also analyse the behaviour of the AutoRegressive Model of order one, AR(1), due to its practical importance. We focus on the mean value of the main stochastic process. By simulation studies, we conclude that the estimator based on the VAR(1) Model is preferable to those derived from the univariate context.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000189-000195
Author(s):  
Milton Watts ◽  
K. Rob Harker

Quartzdyne Electronics has invested millions of device test hours in life testing of circuits in both powered and un-powered tests. In addition to time at temperature, these tests include thermal cycling and high impact drop testing. Recent projects have required the use of larger packages and components as we have expanded the variety of circuits that we build. It is desirable to predict the effects of these changes on long-term reliability before investing in tooling. In this study we will compare a new design which contains these larger components to the simpler, smaller designs for which we have extensive life-test data. Using a physics-of-failure approach, component mounting stresses will be analyzed using finite element modeling. These results will be compared to pre and post-aging shear strengths of actual components of varying sizes. Aging models will then be developed to predict the reliability of the new design based on the comparative stress margins of the individual components coupled with circuit complexity. Once validated, the aging models will enable reliability prediction and trade-off analysis for future designs.


Author(s):  
Tu Xu ◽  
Jorge Laval

This paper analyzes the impact of uphill grades on the acceleration drivers choose to impose on their vehicles. Statistical inference is made based on the maximum likelihood estimation of a two-regime stochastic car-following model using Next Generation SIMulation (NGSIM) data. Previous models assume that the loss in acceleration on uphill grades is given by the effects of gravity. We find evidence that this is not the case for car drivers, who tend to overcome half of the gravitational effects by using more engine power. Truck drivers only compensate for 5% of the loss, possibly because of limited engine power. This indicates not only that current models are severely overestimating the operational impacts that uphill grades have on regular vehicles, but also underestimating their environmental impacts. We also find that car-following model parameters are significantly different among shoulder, median and middle lanes but more data is needed to understand clearly why this happens.


2019 ◽  
Vol 36 (10) ◽  
pp. 2352-2357
Author(s):  
David A Shaw ◽  
Vu C Dinh ◽  
Frederick A Matsen

Abstract Maximum likelihood estimation in phylogenetics requires a means of handling unknown ancestral states. Classical maximum likelihood averages over these unknown intermediate states, leading to provably consistent estimation of the topology and continuous model parameters. Recently, a computationally efficient approach has been proposed to jointly maximize over these unknown states and phylogenetic parameters. Although this method of joint maximum likelihood estimation can obtain estimates more quickly, its properties as an estimator are not yet clear. In this article, we show that this method of jointly estimating phylogenetic parameters along with ancestral states is not consistent in general. We find a sizeable region of parameter space that generates data on a four-taxon tree for which this joint method estimates the internal branch length to be exactly zero, even in the limit of infinite-length sequences. More generally, we show that this joint method only estimates branch lengths correctly on a set of measure zero. We show empirically that branch length estimates are systematically biased downward, even for short branches.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qinghu Liao ◽  
Zubair Ahmad ◽  
Eisa Mahmoudi ◽  
G. G. Hamedani

Many studies have suggested the modifications and generalizations of the Weibull distribution to model the nonmonotone hazards. In this paper, we combine the logarithms of two cumulative hazard rate functions and propose a new modified form of the Weibull distribution. The newly proposed distribution may be called a new flexible extended Weibull distribution. Corresponding hazard rate function of the proposed distribution shows flexible (monotone and nonmonotone) shapes. Three different characterizations along with some mathematical properties are provided. We also consider the maximum likelihood estimation procedure to estimate the model parameters. For the illustrative purposes, two real applications from reliability engineering with bathtub-shaped hazard functions are analyzed. The practical applications show that the proposed model provides better fits than the other nonnested models.


Author(s):  
Serge Hoogendoorn ◽  
Raymond Hoogendoorn

Parameter identification of microscopic driving models is a difficult task. This is caused by the fact that parameters—such as reaction time, sensitivity to stimuli, etc.—are generally not directly observable from common traffic data, but also due to the lack of reliable statistical estimation techniques. This contribution puts forward a new approach to identifying parameters of car-following models. One of the main contributions of this article is that the proposed approach allows for joint estimation of parameters using different data sources, including prior information on parameter values (or the valid range of values). This is achieved by generalizing the maximum-likelihood estimation approach proposed by the authors in previous work. The approach allows for statistical analysis of the parameter estimates, including the standard error of the parameter estimates and the correlation of the estimates. Using the likelihood-ratio test, models of different complexity (defined by the number of model parameters) can be cross-compared. A nice property of this test is that it takes into account the number of parameters of a model as well as the performance. To illustrate the workings, the approach is applied to two car-following models using vehicle trajectories of a Dutch freeway collected from a helicopter, in combination with data collected with a driving simulator.


Sign in / Sign up

Export Citation Format

Share Document