MRI Segmentation Using Fuzzy C-means Clustering Algorithm Basis Neural Network

Author(s):  
Parmida Moradi Birgani ◽  
Meghdad Ashtiyani ◽  
Saeed Asadi
Author(s):  
Suneetha Chittinen ◽  
Dr. Raveendra Babu Bhogapathi

In this paper, fuzzy c-means algorithm uses neural network algorithm is presented. In pattern recognition, fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms to group the high dimensional data into clusters. The proposed work involves two steps. First, a recently developed and Enhanced Kmeans Fast Leaning Artificial Neural Network (KFLANN) frame work is used to determine cluster centers. Secondly, Fuzzy C-means uses these cluster centers to generate fuzzy membership functions. Enhanced K-means Fast Learning Artificial Neural Network (KFLANN) is an algorithm which produces consistent classification of the vectors in to the same clusters regardless of the data presentation sequence. Experiments are conducted on two artificial data sets Iris and New Thyroid. The result shows that Enhanced KFLANN is faster to generate consistent cluster centers and utilizes these for elicitation of efficient fuzzy memberships.


2010 ◽  
Vol 44-47 ◽  
pp. 4146-4150 ◽  
Author(s):  
Ye Cai Guo ◽  
Zheng Xin Liu

To recover QAM signals at the receiver of blind equalizer, a Fuzzy C-means clustering Neural Network Blind Equalization Algorithm based on Signal Transformation (ST-FNN-BEA) is proposed. The proposed algorithm uses signal transformation method to debase the computational complexity of equalizer input signals and speed up the convergence rate, and makes use of fuzzy c-means clustering algorithm dividing the equalizer input signals into each cluster center with different membership values to improve the equalization performance. The proposed ST-FNN-BEA outperforms Neural Network Blind Equalization Algorithm (NN-BEA) and Neural Network Blind Equalization Algorithm based on Signal Transformation (ST-NN-BEA) in improving convergence rates and reducing mean square error. The performance of ST-FNN-BEA is proved by the computer simulation with underwater acoustic channels.


2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaqin Zhang ◽  
Jingan Wang ◽  
Le Xing ◽  
Hui’e Liang

As the precious cultural heritage of the Chinese nation, traditional costumes are in urgent need of scientific research and protection. In particular, there are scanty studies on costume silhouettes, due to the reasons of the need for cultural relic protection, and the strong subjectivity of manual measurement, which limit the accuracy of quantitative research. This paper presents an automatic measurement method for traditional Chinese costume dimensions based on fuzzy C-means clustering and silhouette feature point location. The method is consisted of six steps: (1) costume image acquisition; (2) costume image preprocessing; (3) color space transformation; (4) object clustering segmentation; (5) costume silhouette feature point location; and (6) costume measurement. First, the relative total variation model was used to obtain the environmental robustness and costume color adaptability. Second, the FCM clustering algorithm was used to implement image segmentation to extract the outer silhouette of the costume. Finally, automatic measurement of costume silhouette was achieved by locating its feature points. The experimental results demonstrated that the proposed method could effectively segment the outer silhouette of a costume image and locate the feature points of the silhouette. The measurement accuracy could meet the requirements of industrial application, thus providing the dual value of costume culture research and industrial application.


Sign in / Sign up

Export Citation Format

Share Document