Precipitable Water Vapor Retrieval Over Land from GCOM-W/AMSR2 and its Application to Numerical Weather Prediction

Author(s):  
Masahiro Kazumori
2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Qin Zhang ◽  
Junhua Ye ◽  
Shuangcheng Zhang ◽  
Fei Han

Precipitable water vapor (PWV) content detection is vital to heavy rain prediction; up to now, lots of different measuring methods and devices are developed to observe PWV. In general, these methods can be divided into two categories, ground-based or space-based. In this study, we analyze the advantages and disadvantages of these technologies, compare retrieved atmosphere parameters by different RO (radio occultation) observations, like FORMOSAT-3/COSMIC (Formosa Satellite-3 and Constellation Observing System for Meteorology, Ionosphere, and Climate) and FY3C (China Feng Yun 3C), and assess retrieved PWV precision with a radiosonde. Besides, we interpolate PWV from NWP (numerical weather prediction) reanalysis data for more comparison and analysis with RO. Specifically, ground-based GNSS is of high precision and continuous availability to monitor PWV distribution; in our paper, we show cases to validate and compare GNSS retrieving PWV with a radiosonde. Except GNSS PWV, we give two different radio occultation sounding results, COSMIC and FY3C, to validate the precision to monitor PWV from space in a global area. FY3C results containing Beidou (China Beidou Global Satellite Navigation System) radio occultation events need to be emphasized. So, in our study, we get the retrieved atmospheric profiles from GPS and Beidou radio occultation observations and derive atmosphere PWV by a variational retrieval method based on these data over a global area. Besides, other space-based methods, such as microwave satellite, are also useful in detecting PWV distribution situations in a global area from space; in this study, we present a case of retrieved PWV using microwave satellite observation. NWP reanalysis data ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim and the new-generation reanalysis data ERA5 provide global grid atmosphere parameters, like surface temperature, different-level pressures, and precipitable water. We show cases of retrieved PWV and validate the precision with radiosonde results and compare new reanalysis dataset ERA5 with ERA-Interim, finding that ERA5 can get higher precision-retrieved atmosphere parameters and PWV. In the end, from our comparison, we find that the retrieved PWV from RO (FY3C and COSMIC) and ECMWF reanalysis data (ERA-Interim and ERA5) have a high positive correlation and that almost all R2 values exceed 0.9, compare retrieved PWV with a radiosonde, and find that whether it is RO and ECMWF reanalysis data, ground-based GNSS, or microwave satellite, they all show small biases.


2004 ◽  
Vol 82 (1B) ◽  
pp. 361-370 ◽  
Author(s):  
Gerd GENDT ◽  
Galina DICK ◽  
Christoph REIGBER ◽  
Maria TOMASSINI ◽  
Yanxiong LIU ◽  
...  

2020 ◽  
Author(s):  
Silas Michaelides ◽  
Serguei Ivanov ◽  
Igor Ruban ◽  
Demetris Charalambous ◽  
Filippos Tymvios

<p>Quantitative Precipitation Forecasting (QPF) is among the most central challenges of atmospheric prediction systems. The primary aim of such a task is the generation of accurate estimates of heavy precipitation events associated with severe weather, atmospheric fronts and heavy convective rainfalls. QPF is still among the most intricate challenges of Numerical Weather Prediction. The efforts in this direction are mainly concentrated on improving model formulations for microphysics and convective process and remote sensing data assimilation.</p><p>This paper describes the first results with the regional radar signal processing chain that provides the radar data assimilation (RDA) in the Harmonie convection permitting numerical model. This task is performed for a case study focusing on a wintertime frontal cyclone over the island of Cyprus. Reflectivity measurements from two weather radars, at Larnaka and Paphos, are exploited for simulations of severe weather conditions associated with this synoptic-scale system. Through the variational assimilation procedure, the model takes into account the atmospheric processes occurring in the upstream flow which can be outside the area of radar measurements. The focus is on the precipitable water vapor content and its changes during the cyclone evolution, as well as on the impact of the radar data assimilation on precipitation estimates.</p><p>The results show that the numerical experiments exhibit, in general, a suitable simulation of precipitable water at different stages of the cyclone. In particular, the bulk of the rainfall volume exhibits three stages: intensive rain on the cyclone's frontal zone, weaker precipitation immediately behind the front, and the secondary enhancement of rainfall. The largest corrections due to RDA are of up to 5 mm and occur during the approach of the cyclone frontal zone in a form of enhanced rainfall over the whole area, but more prominently in weak precipitation locations.</p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1390
Author(s):  
Haobo Li ◽  
Xiaoming Wang ◽  
Suqin Wu ◽  
Kefei Zhang ◽  
Erjiang Fu ◽  
...  

Nowadays, precipitable water vapor (PWV) retrieved from ground-based Global Navigation Satellite Systems (GNSS) tracking stations has heralded a new era of GNSS meteorological applications, especially for severe weather prediction. Among the existing models that use PWV timeseries to predict heavy precipitation, the “threshold-based” models, which are based on a set of predefined thresholds for the predictors used in the model for predictions, are effective in heavy precipitation nowcasting. In previous studies, monthly thresholds have been widely accepted due to the monthly patterns of different predictors being fully considered. However, the primary weakness of this type of thresholds lies in their poor prediction results in the transitional periods between two consecutive months. Therefore, in this study, a new method for the determination of an optimal set of diurnal thresholds by adopting a 31-day sliding window was first proposed. Both the monthly and diurnal variation characteristics of the predictors were taken into consideration in the new method. Then, on the strength of the new method, an improved PWV-based model for heavy precipitation prediction was developed using the optimal set of diurnal thresholds determined based on the hourly PWV and precipitation records for the summer over the period 2010–2017 at the co-located HKSC–KP (King’s Park) stations in Hong Kong. The new model was evaluated by comparing its prediction results against the hourly precipitation records for the summer in 2018 and 2019. It is shown that 96.9% of heavy precipitation events were correctly predicted with a lead time of 4.86 h, and the false alarms resulting from the new model were reduced to 25.3%. These results suggest that the inclusion of the diurnal thresholds can significantly improve the prediction performance of the model.


Sign in / Sign up

Export Citation Format

Share Document