radar data assimilation
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Jeong-Ho Bae ◽  
Ki-Hong Min

Radar observation data with high temporal and spatial resolution are used in the data assimilation experiment to improve precipitation forecast of a numerical model. The numerical model considered in this study is Weather Research and Forecasting (WRF) model with double-moment 6-class microphysics scheme (WDM6). We calculated radar equivalent reflectivity factor using higher resolution WRF and compared with radar observations in South Korea. To compare the precipitation forecast characteristics of three-dimensional variational (3D-Var) assimilation of radar data, four experiments are performed based on different precipitation types. Comparisons of the 24-h accumulated rainfall with Automatic Weather Station (AWS) data, Contoured Frequency by Altitude Diagram (CFAD), Time Height Cross Sections (THCS), and vertical hydrometeor profiles are used to evaluate and compare the accuracy. The model simulations are performed with and with-out 3D-VAR radar reflectivity, radial velocity and AWS assimilation for two mesoscale convective cases and two synoptic scale cases. The radar data assimilation experiment improved the location of precipitation area and rainfall intensity compared to the control run. Especially, for the two convective cases, simulating mesoscale convective system was greatly improved.


Author(s):  
Paulo Maurício Moura de Souza ◽  
Eder Paulo Vendrasco ◽  
Ivan Saraiva ◽  
Maximiliano Trindade ◽  
Maria Betânia Leal de Oliveira ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3821
Author(s):  
Zhaoyang Huo ◽  
Yubao Liu ◽  
Ming Wei ◽  
Yueqin Shi ◽  
Chungang Fang ◽  
...  

Radar data are essential to convection nowcasting and nudging-based radar data assimilation through diabatic initialization is one of the most effective approaches for forecasting convective systems with numerical weather prediction (NWP) models, used at several advanced global weather centers. It is desired to assess the uncertainty and physical consistency of this assimilation process. This paper investigated impacts of relaxation coefficient, radar data update intervals and continuous assimilation time duration and addressed the key issues and possible solutions of the radar data assimilation based on the WRF hydrometeor and latent heat nudging (HLHN) developed at the National Center for Atmospheric Research (NCAR). It is revealed that excessively large relaxation coefficient forced the model to observations with a tendency greater than the physical terms of the convection, causing the dynamic imbalances and serious convection “ramp-down” right after the free forecast starts. Assimilating high update frequency radar data can make the tendency terms moderate and sustained thereby maintaining the assimilation effect and reducing fortuitous convection. HLHN requires a minimum continuous assimilation duration to contain the initial forced disturbance of the model. For a summer Meiyu precipitation case studied, the minimum duration is ~1 h. Appropriate selection of the HLHN parameters is able to effectively improve the temperature, humidity, and dynamic fields of the model. In addition, several issues still remain to be solved to further enhance HLHN.


2021 ◽  
Vol 13 (16) ◽  
pp. 3251
Author(s):  
Tianwei Gu ◽  
Yaodeng Chen ◽  
Yufang Gao ◽  
Luyao Qin ◽  
Yuqing Wu ◽  
...  

Accurate and long leading time flood forecasting is very important for flood disaster mitigation. It is an effective method to couple the Quantitative Precipitation Forecast (QPF) products provided by Numerical Weather Prediction (NWP) models to a distributed hydrological model with the goal of extending the leading time for flood forecasting. However, the QPF products contain a certain degree of uncertainty and would affect the accuracy of flood forecasting, especially in the mountainous regions. Radar data assimilation plays an important role in improving the quality of QPF and further improves flood forecasting. In this paper, radar data assimilation was applied in order to construct a high-resolution atmospheric-hydrological coupling model based on the WRF and WRF-Hydro models. Four experiments with conventional observational and radar data assimilation were conducted to evaluate the flood forecasting capability of this coupled model in a small-medium sized basin based on eight typical flood events. The results show that the flood forecast skills are highly QPF-dependent. The QPF from the WRF model is improved by assimilating radar data and further increasing the accuracy of flood forecasting, although both precipitation and flood are slightly over-forecasted. However, the improvements by assimilating conventional observational data are not obvious. In general, radar data assimilation can improve flood forecasting effectively in a small-medium sized basin based on the atmospheric-hydrological coupling model.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 853
Author(s):  
Feifei Shen ◽  
Jinzhong Min ◽  
Hong Li ◽  
Dongmei Xu ◽  
Aiqing Shu ◽  
...  

The impact of assimilating radar radial velocity and reflectivity on the analyses and forecast of Hurricane IKE is investigated within the framework of the WRF (Weather Research and Forecasting) model and its three-dimensional variational (3DVar) data assimilation system, including the hydrometeor control variables. Hurricane IKE in the year 2008 was chosen as the study case. It was found that assimilating radar data is able to effectively improve the small-scale information of the hurricane vortex area in the model background. Radar data assimilation experiments yield significant cyclonic wind increments in the inner-core area of the hurricane, enhancing the intensity of the hurricane in the model background. On the other hand, by extending the traditional control variables to include the hydrometeor control variables, the assimilation of radar reflectivity can effectively adjust the water vapor and hydrometeors of the background, further improving the track and intensity forecast of the hurricane. The precipitation forecast skill is also enhanced to some extent with the radar data assimilation, especially with the extended hydrometeor control variables.


2021 ◽  
Vol 253 ◽  
pp. 105473
Author(s):  
Serguei Ivanov ◽  
Silas Michaelides ◽  
Igor Ruban ◽  
Demetris Charalambous ◽  
Filippos Tymvios

2021 ◽  
Vol 21 (2) ◽  
pp. 723-742
Author(s):  
Jiyang Tian ◽  
Ronghua Liu ◽  
Liuqian Ding ◽  
Liang Guo ◽  
Bingyu Zhang

Abstract. As an effective technique to improve the rainfall forecast, data assimilation plays an important role in meteorology and hydrology. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems. The Weather Research and Forecasting (WRF) model is applied to simulate three typhoon storm events on the southeast coast of China. Radar data from a Doppler radar station in Changle, China, are assimilated with three-dimensional variational data assimilation (3-DVar) model. Nine assimilation modes are designed by three kinds of radar data and at three assimilation time intervals. The rainfall simulations in a medium-scale catchment, Meixi, are evaluated by three indices, including relative error (RE), critical success index (CSI), and root mean square error (RMSE). Assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations, and it outperforms the other modes for all the three storm events. Shortening the assimilation time interval can improve the rainfall simulations in most cases, while assimilating radar reflectivity always leads to worse simulations as the time interval shortens. The rainfall simulations can be improved by data assimilation as a whole, especially for the heavy rainfall with strong convection. The findings provide references for improving the typhoon rainfall forecasts at catchment scale and have great significance on typhoon rainstorm warning.


Sign in / Sign up

Export Citation Format

Share Document