Digital control power supply using the high-speed DSP and quasi-PID control

Author(s):  
Yutaka Nishikori ◽  
Yoshimichi Nakamura ◽  
Kazuo Kobayashi ◽  
Hirofumi Matsuo
2005 ◽  
Vol 31 (5) ◽  
pp. 307-310
Author(s):  
Yukihiro OHNISHI ◽  
Satoshi UEDA ◽  
Michiaki INOMOTO ◽  
Takeshi FUKUDA

2018 ◽  
Vol 77 (6) ◽  
pp. 337-346 ◽  
Author(s):  
A. B. Kosarev ◽  
A. V. Barch ◽  
E. N. Rozenberg

Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.


2021 ◽  
Vol 221 ◽  
pp. 108115
Author(s):  
C.L. Amoroso ◽  
A. Liverani ◽  
D. Francia ◽  
A. Ceruti
Keyword(s):  

1981 ◽  
Vol 27 (6) ◽  
pp. 220-221 ◽  
Author(s):  
M.M. Bemalkhedkar ◽  
R. Koul ◽  
C.M. Tripathi ◽  
M.S. Qureshi

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 253
Author(s):  
Si Wu ◽  
Mingli Wu ◽  
Yi Wang

The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed loss and traction loss as well as mechanical failures, all of which threaten the fast and safe operation of the train and the system. Meanwhile, the power quality problems (e.g., the negative sequence current, the reactive power, and the harmonic) can bring a series of problems that cannot be ignored on the three-phase grid side. In response, many researchers have proposed co-phase power-supply schemes to solve these two problems simultaneously. Given that the auto-transformer (AT) power-supply mode has become the main power-supply mode for the high-speed railway traction power-supply system, it has a bright future following the rapid development of the high-speed railway. In addition, there is no co-phase power-supply scheme designed for AT power-supply mode in the existing schemes. Therefore, the main contribution of this paper is to propose a specifically designed power-supply mode more suitable for the AT, as well as to establish the control systems for the rectifier side and the inverter side. In addition, for the proposed scheme, the operation principle is analyzed, the mathematical model is built, and the control system is created, and its functionality is verified by simulation, and its advantages are compared and summarized finally. The result proves that it can meet functional requirements. At the same time, compared with the existing co-phase power-supply scheme, it saves an auto-transformer in terms of topology, reduces the current stress by 10.9% in terms of the current stress of the switching device, and reduces the power loss by 0.25% in terms of the entire system power loss, which will result in a larger amount of electricity being saved. All of this makes it a more suitable co-phase power-supply scheme for the AT power-supply mode.


Sign in / Sign up

Export Citation Format

Share Document