Improvement of Energy Consumption of an Electric Bus with Loss Minimization

Author(s):  
Martin Novak ◽  
Jaroslav Novak
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 55586-55598 ◽  
Author(s):  
Klaus Kivekas ◽  
Jari Vepsalainen ◽  
Kari Tammi

2019 ◽  
Vol 9 (16) ◽  
pp. 3352 ◽  
Author(s):  
Yuhuan Liu ◽  
Enjian Yao ◽  
Shasha Liu

As a new type of green bus, the pure electric bus has obvious advantages in energy consumption and emission reduction compared with the traditional fuel bus. However, the pure electric bus has a mileage range constraint and the amount of charging infrastructure cannot meet the demand, which makes the scheduling of the electric bus driving plans more complicated. Meanwhile, many routes are operated with mixing pure electric buses and traditional fuel buses. As mentioned above, we focus on the operating organization problem with the multi-type bus (pure electric buses and traditional fuel buses), aiming to provide guidance for future application of electric buses. We take minimizing the energy consumption of vehicles, the waiting and traveling time of passengers as the objectives, while considering the constraints of vehicle full load limitation, minimal departure interval, mileage range and charging time window. The energy consumption based multi-type bus operating organization model was formulated, along with the heuristic algorithm to solve it. Then, a case study in Beijing was performed. The results showed that, the optimal mixing ratio of electric bus and fuel bus vary according to the variation of passenger flow. In general, each fuel bus could be replaced by two pure electric buses. Moreover, in the transition process of energy structure in public transport, the vehicle scale keeps increasing. The parking yard capacity and the amount of charging facilities are supposed to be further expanded.


2020 ◽  
Vol 1585 ◽  
pp. 012016
Author(s):  
Jingyuan Li ◽  
Xiaopan An ◽  
Yu Liu ◽  
Hanzhengnan Yu ◽  
He Lv ◽  
...  

2019 ◽  
Vol 52 (24) ◽  
pp. 59-64
Author(s):  
Olaf Czogalla ◽  
Ulrich Jumar

2020 ◽  
Vol 10 (17) ◽  
pp. 6088
Author(s):  
Kuan-Cheng Lin ◽  
Chuan-Neng Lin ◽  
Josh Jia-Ching Ying

In recent years, the Taiwan government has been calling for the use of public transportation and has been popularizing pollution-reducing green vehicles. Passenger transport operators are being encouraged to replace traditional buses with electric buses, to increase their use in urban transportation. Reduced energy consumption and operating costs are important operational benefits for passenger transport operators, and driving behavior has a significant impact on fuel consumption. Although many literatures or real-world systems have addressed the issues related to reducing energy consumption with electric buses, these works do not involve the records collected from an on-vehicle battery management system (BMS). Accordingly, the results of analyses of existing works lack in-depth discussions, and therefore the applicability of existing works is insignificant. Therefore, in this study, driving data were collected using a battery management system (BMS), and vehicular power consumption was classified according to energy efficiency. Then, decision trees and random forest were applied to construct energy consumption analytical models. Finally, the driving behaviors that influence energy consumption were investigated. A case study was conducted in which a Taichung passenger transport operator’s electric bus driving data on urban routes were collected to construct energy consumption analytical models. The data consisted of two parts, i.e., vehicle records and route records. On the basis of these records, we considered the practicability and applicability of the analytical models by transforming the unstructured records into raw data. Passenger transport operators and drivers can leverage the obtained eco-driving indicators for different bus routes for energy savings and carbon reduction.


Energy ◽  
2021 ◽  
pp. 122454
Author(s):  
Hussein Basma ◽  
Charbel Mansour ◽  
Marc Haddad ◽  
Maroun Nemer ◽  
Pascal Stabat

2021 ◽  
Vol 298 ◽  
pp. 117204
Author(s):  
Pengshun Li ◽  
Yuhang Zhang ◽  
Yi Zhang ◽  
Yi Zhang ◽  
Kai Zhang

2020 ◽  
Vol 128 ◽  
pp. 19-28
Author(s):  
Teresa Pamuła

The estimation of energy consumption has become an important prerequisite for planning the implementation of electric buses and the required infrastructure for charging them in public urban transport. The article proposes a model for estimating electric bus energy consumption for the bus line of public urban transport. The developed model uses a deep learning network to estimate bus energy consumption, stop by stop, accounting for the road characteristics. The research aimed to develop a neural model for estimating electric energy consumption so that it can be easily applied in large bus networks using real data sources that are widely available to bus operators. The deep learning networks allow for the effective use of a large number of sample data (big data). The energy needed to power a bus which travels a distance from a bus stop to a bus stop is a function of selected parameters, such as distance between stops, driving time between stops, time at the bus stop, average number of passengers, the slope of the road, average speed between stops, extra energy – fixed value for the section. The given relationships were mapped using a neural network. A neural model for estimating the energy consumption of an electric bus can be used in works for determining the necessary battery capacity, for the design of optimized charging strategies and to determine charging infrastructure requirements for electric buses in a public transport network. Ocena zapotrzebowania na energię stała się ważnym warunkiem wstępnym planowania wdrażania autobusów elektrycznych oraz wymaganej infrastruktury do ich ładowania w publicznym transporcie miejskim. W artykule zaproponowano model szacowania zużycia energii przez autobus elektryczny dla linii autobusowej przedsiębiorstwa komunikacji miejskiej. W opracowanym modelu do wyznaczenia zapotrzebowania na energię autobusu na odcinku drogi od przystanku do przystanku z uwzględnieniem charakterystyki drogi lokalnej użyto sieci neuronowej typu deep learning. Celem badań było opracowanie neuronowego modelu szacowania zużycia energii elektrycznej tak, aby można go było łatwo zastosować w dużych sieciach autobusowych przy użyciu rzeczywistych źródeł danych, które są powszechnie dostępne dla operatorów transportu autobusowego. Użycie sieci typu deep learning pozwala na efektywne wykorzystanie dużej liczby danych wzorcowych (tzw. big data). Przyjęto, że wartość energii potrzebna do pokonania odległości od przystanku do przystanku autobusowego jest funkcją wybranych parametrów, takich jak: odległość między przystankami, czas trwania jazdy na odcinku między przystankami, czas przebywania autobusu na przystanku, średnia liczba pasażerów, kąt nachylenia drogi, średnia prędkość na odcinku, energia dodatkowa – stała wartość dla odcinka. Podane zależności zostały odwzorowane za pomocą sieci neuronowej. Neuronowy model oszacowania zużycia energii przez autobus elektryczny może zostać użyty w pracach mających na celu określenie niezbędnej pojemności akumulatorów, zaprojektowanie zoptymalizowanych strategii ładowania oraz określenie wymogów w zakresie infrastruktury ładowania dla autobusów elektrycznych w sieci transportu publicznego.


Sign in / Sign up

Export Citation Format

Share Document