RF energy harvester design with autonomously adaptive impedance matching network based on auxiliary charge-pump rectifier

Author(s):  
Ping Zhao ◽  
Manfred Glesner
2016 ◽  
Vol 25 (06) ◽  
pp. 1650055 ◽  
Author(s):  
Lianxi Liu ◽  
Wenzhi Yuan ◽  
Junchao Mu ◽  
Zhangming Zhu ◽  
Yintang Yang

Threshold voltage self-compensation technology (TVSC) has been widely used in RF energy harvester. In this paper, the influence of the size of rectifying transistors, the stages and compensation orders of the rectifier, and the impedance matching network on the performance of RF energy harvester has been studied. A dual band RF energy harvester with hybrid threshold voltage self-compensation (HTVSC) is proposed in this paper in 65-nm CMOS process according to the distribution characteristic of the ambient RF energy. By combining TVSC and the technology of weak forward bias between the source and body of the rectifying transistor, the threshold voltage of MOSFET can be dramatically decreased. The performance of the RF energy harvester has been improved using this new technology. The simulation results show that the proposed dual band RF energy harvester can acquire energy at the band of 900[Formula: see text]MHz and 2.4[Formula: see text]GHz. At 900[Formula: see text]MHz-band (825–960[Formula: see text]MHz), with 1[Formula: see text]M[Formula: see text] load resistor, the output voltage of the energy harvester can be over 1.0[Formula: see text]V with a minimum [Formula: see text]18[Formula: see text]dBm RF input power and a maximum 13.8% power conversion efficiency (PCE). At 2.4[Formula: see text]GHz-band (2.4–2.485[Formula: see text]GHz), the minimum input power can be as low as [Formula: see text]19[Formula: see text]dBm with a maximum efficiency of 16.8%.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 424
Author(s):  
Sunanda Roy ◽  
Jun-Jiat Tiang ◽  
Mardeni Bin Roslee ◽  
Md. Tanvir Ahmed ◽  
Abbas Z. Kouzani ◽  
...  

For low input radio frequency (RF) power from −35 to 5 dBm, a novel quad-band RF energy harvester (RFEH) with an improved impedance matching network (IMN) is proposed to overcome the poor conversion efficiency and limited RF power range of the ambient environment. In this research, an RF spectral survey was performed in the semi-urban region of Malaysia, and using these results, a multi-frequency highly sensitive RF energy harvester was designed to harvest energy from available frequency bands within the 0.8 GHz to 2.6 GHz frequency range. Firstly, a new IMN is implemented to improve the rectifying circuit’s efficiency in ambient conditions. Secondly, a self-complementary log-periodic higher bandwidth antenna is proposed. Finally, the design and manufacture of the proposed RF harvester’s prototype are carried out and tested to realize its output in the desired frequency bands. For an accumulative −15 dBm input RF power that is uniformly universal across the four radio frequency bands, the harvester’s calculated dc rectification efficiency is about 35 percent and reaches 52 percent at −20 dBm. Measurement in an ambient RF setting shows that the proposed harvester is able to harvest dc energy at −20 dBm up to 0.678 V.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950104
Author(s):  
Chandra Shekhar ◽  
Shirshu Varma

The lifetime of battery-operated sensor platforms (i.e., sensor nodes) is a critical issue. The replacement of their batteries is quite a challenging task if these platforms are deployed for detecting events in inaccessible geographical areas (e.g., forest). This paper describes an optimized RF energy harvester/scavenger (consisting of an antenna, impedance matching circuit and rectifier) for energizing low-power sensor platforms (electronic systems). Few nonmatched rectifiers (using HSMS-285X Schottky diodes) are fabricated to characterize the input impedance for different sets of parameters. After characterization a proper impedance matching circuit is integrated for the maximum power transfer from antenna to rectifier. It is shown that a single stage of RF rectifier is enough to produce output voltage of 1.8[Formula: see text]V. Very few realizations of RF energy harvester are reported in the literature under 2.4[Formula: see text]GHz ISM band category. Furthermore, high-gain microstrip patch array antennas are fabricated to capture the maximum power from the surroundings. The maximum harvesting range of 0.92[Formula: see text]m is obtained at 27[Formula: see text]dBm transmitting power level.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Reza Shokrani ◽  
Mojtaba Khoddam ◽  
Mohd Nizar B. Hamidon ◽  
Noor Ain Kamsani ◽  
Fakhrul Zaman Rokhani ◽  
...  

This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier’s output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document