Low cost eye diagram reconstruction and morphological analysis for optical network performance monitoring using digital signal processing techniques

Author(s):  
Eduardo Mobilon ◽  
Miriam R. X. de Barros ◽  
Amauri Lopes
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhehuang Huang ◽  
Yidong Chen

Exon recognition is a fundamental task in bioinformatics to identify the exons of DNA sequence. Currently, exon recognition algorithms based on digital signal processing techniques have been widely used. Unfortunately, these methods require many calculations, resulting in low recognition efficiency. In order to overcome this limitation, a two-stage exon recognition model is proposed and implemented in this paper. There are three main works. Firstly, we use synergetic neural network to rapidly determine initial exon intervals. Secondly, adaptive sliding window is used to accurately discriminate the final exon intervals. Finally, parameter optimization based on artificial fish swarm algorithm is used to determine different species thresholds and corresponding adjustment parameters of adaptive windows. Experimental results show that the proposed model has better performance for exon recognition and provides a practical solution and a promising future for other recognition tasks.


Sign in / Sign up

Export Citation Format

Share Document