Multisensor information fusion algorithm and application combining D-S evidence theory and BP neural network

Author(s):  
Tao Xu ◽  
Zengyong Shi ◽  
Xiaohong Kong ◽  
Xin Ning ◽  
Youchun Zhang
2013 ◽  
Vol 567 ◽  
pp. 113-117 ◽  
Author(s):  
Can Zhao ◽  
C.R. Tang ◽  
S. Wan

This paper applies the information fusion technology to tool monitoring. As one of the most important processing factor, the cutting tool and the tool wear directly influence size precision. Signals of cutting force and vibration are measured with multi-sensor. By using multi-sensor the drawbacks can be overcome, the multi-sensor information fusion mentioned in manufacture stands for extracting kinds of information from different sensors (especially for cutting force and vibration signal in this paper), making best use of all resources,according to certain criterion to judge the spatial and time redundancy , to make the system more comprehensive. Two data fusion methods, which are BP Neural Network and Wavelet Neural Network for predicting tool wear, and are debated. By the hybrid of BP and wavelet based neural network the cutting tool status inspection system is built so that the forecast of tool wear can be achieved. The results show experimentally two of these presented methods effectively implement tool wear monitoring and predicting.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


2016 ◽  
Vol 12 (05) ◽  
pp. 53 ◽  
Author(s):  
Lin Liandong

This study aims to solve the problem of multi-sensor information fusion, which is a key issue in the multi-sensor system development. The main innovation of this study is to propose a novel multi-sensor information fusion algorithm based on back propagation neural network and Bayesian inference. In the proposed algorithm, a triple is defined to represent a probability space; thereafter, the Bayesian inference is used to estimate the posterior expectation. Finally, we construct a simulation environment to test the performance of the proposed algorithm. Experimental results demonstrate that the proposed algorithm can significantly enhance the accuracy of temperature detection after fusing the data obtained from different sensors.


2015 ◽  
Vol 733 ◽  
pp. 898-901 ◽  
Author(s):  
Hong Li ◽  
Xue Ding

Optimization problem is the problem which can be often encountered mostly in industrial design, and the key of optimization is to find the global optimum and higher constriction speed. This paper proposes a PSO algorithm based on BP neural network by neural network trains and selects individual extreme best randomly, to make the particle follow the optimal particle in the solution space search, and obtain the optimum extreme best in the whole situation. Through the application of the simulation experiment on image segmentation showed that the algorithm is suitable in dealing with multiple types function and constraint, with fast convergence speed, and easy combination with traditional optimization methods, thus improving its own limitations, and solving problems more efficiently.


Sign in / Sign up

Export Citation Format

Share Document