A study of harmonic distortion limit changes during the reconfiguration process of the smart grid

Author(s):  
Wenyue Yang ◽  
Daniel L. Geiger ◽  
S. Mark Halpin
2019 ◽  
Vol 8 (2S11) ◽  
pp. 3283-3289

The DC smart-grid-system (DCSGS) becomes more and more popular and it is seen as an alternative to the AC. In DCSGS, voltage quality and harmonic distortion issues affects the performance of integrated renewable power sources. To improve the voltage quality, SEPIC converter is used to step up the output of PV cell. In DCSGS, output of PV is stepped-up using SEPIC. The output of wind generator is also rectified and stepped-up using SEPIC. This effort covenants with modeling&-simulation of CL(closed-loop)-DC-SGS (smart grid system) with PR controller and FLC in DCSGS. The performance of DCSGS with PR and FLC are compared and their results are presented. The results indicate that FLC controlled close-loop DCSGS gives superior response


2019 ◽  
Vol 8 (4) ◽  
pp. 1874-1878

Supervisory control and data acquisition (SCADA) is one of the existing phase measurement system provides the real-time control of power switching relays, attains information of the system status. Usually it accomplishes three-phase measurement in distributed network of smart grid through ample power quality measurement of voltage, current, and mostly the total harmonic distortion. However, the investigation of the paper suggests that SCADA delivers the updates of the grid information in times with the communication delays of 15 seconds. Of course, these timing delays can be higher, since it varies on the system complexity. Therefore, this communication delays too high in terms of synchronization, fault monitoring, and the measurement of the system variables in real-time. Therefore, this study covers the communication framework and its protocols of the smart grid application. To make the study more concise, this paper also assessed the delay of IEEE 1588 and IEEE C37.118 for the synchronization performance measurement. Moreover, this paper also includes the performance analysis of the existing the intelligent system and its protocols for smart grid application.


Author(s):  
Mostafa Al gabalawy ◽  
Ramy M. Hossam ◽  
Shimaa A. Hussien ◽  
Nesreen S. Hosny

To link DC power sources to an AC grid, converters are needed. Inverters are the power electronic devices, which are used for this purpose. Conventional inverters employ harmonic filters and transformers that are lossy and expensive. Multilevel inverters (MLIs) are an alternative to conventional ones, proposing reduced total harmonic distortion (THD), increased range of control, and inductor-less design. They generate a stepped waveform, with close similarity to a sine wave. Many distributed sources may be employed in a smart grid. If those sources have minimal THD, the filtering process could be reduced at the point of common coupling. This paper presents two switched capacitor based MLIs, proposing boost capability and low THD. Inverters have inherent charge balancing capability, which eliminates the need for auxiliary circuits and voltage sensors. Inverters switches are modulated using phase opposition disposition pulse-width modulation (PODPWM) method that ease the balancing of the voltage and decrease the losses of switching. Designs were verified by simulation and the output waveforms were introduced.


2021 ◽  
Vol 1 (4) ◽  
pp. 23-29
Author(s):  
Adel Elgammal ◽  
Tagore Ramlal

Increased usage of combined PV-Wind renewable energy sources is seen as a positive step toward reducing air pollution and carbon emissions. However, since non-linear loads have increased dramatically, voltage quality and harmonic distortion concerns have arisen, affecting the operation of combined PV-Wind RES and smart-grid electrical transmission structures. This study shows how a Shunt active power filter may improve energy quality in a microgrid structure at the distribution level. The major goal of this article is to find an appropriate controller approach for improving the shunt active power filter's compensating capacity. This paper simulates a PV-Wind hybrid renewable energy system that operates in the presence of unpredictably variable solar and wind energy resources. The objective is to allow the construction of an electrical control structure that produces the right duty cycle. It will aid in the regulation and stabilization of voltages at dc/dc energy conversion plant. Simulation is used to assess the proposed control system's ability to enhance power quality. The device's compensating capability is mostly determined by the DC link capacitor voltage control. The closed loop functioning of a proportional integral controller is used to attain this voltage regulation in the past. To increase the functioning of a shunt active power filter, the MOPSO procedure approach has been presented. The performance of suggested approaches and the comparison of different pulse generating strategies have been validated in the SIMULINK/MATLAB model environment. The suggested technology successfully improves power quality on the grid and maintains a steady voltage on the grid despite variations in RE output and load.


2021 ◽  
Vol 27 (1) ◽  
pp. 16-29
Author(s):  
D. Danalakshmi ◽  
S. Prathiba ◽  
M. Ettappan ◽  
D. Mohan Krishna

Abstract The Smart Grid environment gives more benefits for the consumers, whereas the power quality is one of the challenging factors in the smart grid environment. To protect the system equipment and increase the reliability, different filter technologies are used. Even though, consumers’ expectations towards the power quality are not fulfilled. To overcome these drawbacks and enhance the system reliability, a new Custom Power Devices (CPD) are introduced in the system. Among different CPDs, the Dynamic Voltage Restorer (DVR) is one of the voltage compensating devices that is used to improve the power quality during distortions. When the distortions such as voltage swell and sag occur in the distribution system, the control strategy in the DVR plays a significant role. In this article, the DVR performance using Proportional Integral (PI), Proportional Resonant (PR) controllers are analyzed. A robust optimization algorithm called Self Balanced Differential Evolution (SBDE) is used to find the optimal gain values of the controllers in order to reach the target of global minimum error and obtain fast response. Then, a comparative analysis is performed between different controllers and verified that the performance of PR controller is superior than the other controllers. It has been found that the proposed PR controller strategy reduces the Total Harmonic Distortion (THD) values for all types of faults. The proposed SBDE optimized DVR with PR controller reduces the THD value less than 4% under voltage distoration condition. The DVR topology is validated in MATLAB/SIMULINK in order to detect the disturbance and inject the voltage to compensate the load voltage.


2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.


Sign in / Sign up

Export Citation Format

Share Document