Improving pedestrian navigation system performance through the use of non-orthogonal redundant inertial measurement units

Author(s):  
Pavel Marinushkin ◽  
Alexey Levitskiy ◽  
Fedor Zograf
Author(s):  
I. A. Chistyakov ◽  
I. V. Grishov ◽  
A. A. Nikulin ◽  
M. V. Pikhletsky ◽  
I. B. Gartseev

This paper is devoted to construction of reference walking trajectories for developing pedestrian navigation algorithms for smartphones. Such trajectories can be used both for verification of classical algorithms of navigation or for application of machine learning technics. Reconstruction of closed trajectories based on data from foot-mounted inertial measurement units (IMU) is investigated. The advantages of the approach are the use of inexpensive sensors and the simplicity of the presented method. We propose algorithms for reconstruction of smooth 2D pedestrian trajectories based on measurements from a single IMU as well as on combined measurements from two IMU’s. Introduced algorithms are based on application of modified Kalman filter with an assumption of IMU having zero velocity when foot contacts the ground. In case of two measurement units, it is additionally assumed that the positions of the sensors cannot differ significantly from each other. The algorithms were tested on trajectories lasting from 1 to 10 minutes, passing indoors on horizontal surfaces. Obtained results were compared with high precision trajectories acquired with GNSS RTK receivers. Additionally, the process of inter-device time synchronization is investigated and detailed description of the experiments and used equipment is given. The dataset used for verification of proposed algorithms is freely available at: http://gartseev.ru/projects/rtj2021.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Hailong Rong ◽  
Yanping Zhu ◽  
Jidong Lv ◽  
Cuiyun Peng ◽  
Ling Zou

2020 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
Simon Beck ◽  
Bernhard Laufer ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller

AbstractDemographic changes and increasing air pollution entail that monitoring of respiratory parameters is in the focus of research. In this study, two customary inertial measurement units (IMUs) are used to measure the breathing rate by using quaternions. One IMU was located ventral, and one was located dorsal on the thorax with a belt. The relative angle between the quaternion of each IMU was calculated and compared to the respiratory frequency obtained by a spirometer, which was used as a reference. A frequency analysis of both signals showed that the obtained respiratory rates vary slightly (less than 0.2/min) between the two systems. The introduced belt can analyse the respiratory rate and can be used for surveillance tasks in clinical settings.


2021 ◽  
Vol 32 (4) ◽  
Author(s):  
Luigi D’Alfonso ◽  
Emanuele Garone ◽  
Pietro Muraca ◽  
Paolo Pugliese

AbstractIn this work, we face the problem of estimating the relative position and orientation of a camera and an object, when they are both equipped with inertial measurement units (IMUs), and the object exhibits a set of n landmark points with known coordinates (the so-called Pose estimation or PnP Problem). We present two algorithms that, fusing the information provided by the camera and the IMUs, solve the PnP problem with good accuracy. These algorithms only use the measurements given by IMUs’ inclinometers, as the magnetometers usually give inaccurate estimates of the Earth magnetic vector. The effectiveness of the proposed methods is assessed by numerical simulations and experimental tests. The results of the tests are compared with the most recent methods proposed in the literature.


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


Sign in / Sign up

Export Citation Format

Share Document