Some properties of g-Mellin convolution

Author(s):  
Natasa Durakovic ◽  
Tatjana Grbic ◽  
Slavica Medic ◽  
Sandra Buhmiler
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


2020 ◽  
Vol 27 (2) ◽  
pp. 211-231
Author(s):  
Roland Duduchava ◽  
Medea Tsaava

AbstractThe purpose of the present research is to investigate model mixed boundary value problems (BVPs) for the Helmholtz equation in a planar angular domain {\Omega_{\alpha}\subset\mathbb{R}^{2}} of magnitude α. These problems are considered in a non-classical setting when a solution is sought in the Bessel potential spaces {\mathbb{H}^{s}_{p}(\Omega_{\alpha})}, {s>\frac{1}{p}}, {1<p<\infty}. The investigation is carried out using the potential method by reducing the problems to an equivalent boundary integral equation (BIE) in the Sobolev–Slobodečkii space on a semi-infinite axis {\mathbb{W}^{{s-1/p}}_{p}(\mathbb{R}^{+})}, which is of Mellin convolution type. Applying the recent results on Mellin convolution equations in the Bessel potential spaces obtained by V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl. 443 2016, 2, 707–731], explicit conditions of the unique solvability of this BIE in the Sobolev–Slobodečkii {\mathbb{W}^{r}_{p}(\mathbb{R}^{+})} and Bessel potential {\mathbb{H}^{r}_{p}(\mathbb{R}^{+})} spaces for arbitrary r are found and used to write explicit conditions for the Fredholm property and unique solvability of the initial model BVPs for the Helmholtz equation in the non-classical setting. The same problem was investigated in a previous paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in arbitrary 2D-sectors, Georgian Math. J. 20 2013, 3, 439–467], but there were made fatal errors. In the present paper, we correct these results.


2006 ◽  
Vol 132 (5) ◽  
pp. 637-642 ◽  
Author(s):  
F. Mainardi ◽  
G. Pagnini ◽  
R. Gorenflo

Author(s):  
Jose Javier Garcia Moreta

In this paper we use the Mellin convolution theorem, which is related to Perron's formula. Also we introduce new explicit formulae for arithmetic function which generalize the explicit formulae of Weil for other arithmetic functions different from the Von-Mangoldt function.


Sign in / Sign up

Export Citation Format

Share Document