mellin convolution
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Natasa Durakovic ◽  
Tatjana Grbic ◽  
Slavica Medic ◽  
Sandra Buhmiler
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


2020 ◽  
Vol 27 (2) ◽  
pp. 211-231
Author(s):  
Roland Duduchava ◽  
Medea Tsaava

AbstractThe purpose of the present research is to investigate model mixed boundary value problems (BVPs) for the Helmholtz equation in a planar angular domain {\Omega_{\alpha}\subset\mathbb{R}^{2}} of magnitude α. These problems are considered in a non-classical setting when a solution is sought in the Bessel potential spaces {\mathbb{H}^{s}_{p}(\Omega_{\alpha})}, {s>\frac{1}{p}}, {1<p<\infty}. The investigation is carried out using the potential method by reducing the problems to an equivalent boundary integral equation (BIE) in the Sobolev–Slobodečkii space on a semi-infinite axis {\mathbb{W}^{{s-1/p}}_{p}(\mathbb{R}^{+})}, which is of Mellin convolution type. Applying the recent results on Mellin convolution equations in the Bessel potential spaces obtained by V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl. 443 2016, 2, 707–731], explicit conditions of the unique solvability of this BIE in the Sobolev–Slobodečkii {\mathbb{W}^{r}_{p}(\mathbb{R}^{+})} and Bessel potential {\mathbb{H}^{r}_{p}(\mathbb{R}^{+})} spaces for arbitrary r are found and used to write explicit conditions for the Fredholm property and unique solvability of the initial model BVPs for the Helmholtz equation in the non-classical setting. The same problem was investigated in a previous paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in arbitrary 2D-sectors, Georgian Math. J. 20 2013, 3, 439–467], but there were made fatal errors. In the present paper, we correct these results.


Author(s):  
Y. A. Antipov ◽  
S. M. Mkhitaryan

Analytical solutions to two axisymmetric problems of a penny-shaped crack when an annulus-shaped (model 1) or a disc-shaped (model 2) rigid inclusion of arbitrary profile are embedded into the crack are derived. The problems are governed by integral equations with the Weber–Sonine kernel on two segments. By the Mellin convolution theorem, the integral equations associated with models 1 and 2 reduce to vector Riemann–Hilbert problems with 3 × 3 and 2 × 2 triangular matrix coefficients whose entries consist of meromorphic and plus or minus infinite indices exponential functions. Canonical matrices of factorization are derived and the partial indices are computed. Exact representation formulae for the normal stress, the stress intensity factors (SIFs) at the crack and inclusion edges, and the normal displacement are obtained and the results of numerical tests are reported. In addition, simple asymptotic formulae for the SIFs are derived.


Author(s):  
Jose Javier Garcia Moreta

In this paper we use the Mellin convolution theorem, which is related to Perron's formula. Also we introduce new explicit formulae for arithmetic function which generalize the explicit formulae of Weil for other arithmetic functions different from the Von-Mangoldt function.


Author(s):  
Yuri Luchko

In this paper, some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation are deduced. We start with the Mellin-Barnes representation of the fundamental solution that was derived in the previous publications of the author. The Mellin-Barnes integral is used to get two new representations of the fundamental solution in form of the Mellin convolution of the special functions of the Wright type. Moreover, some new closed form formulas for particular cases of the fundamental solution are derived. In particular, we solve an open problem of representation of the fundamental solution to the two-dimensional neutral-fractional diffusion-wave equation in terms of the known special functions.


Sign in / Sign up

Export Citation Format

Share Document