An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation

2005 ◽  
Vol 28 (3) ◽  
pp. 481-487 ◽  
Author(s):  
J.W. Wan ◽  
W.J. Zhang ◽  
D.J. Bergstrom
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chong Ng ◽  
Mohamad Aizat Abas

Purpose This paper aims to present new analytical model for the filling times prediction in flip-chip underfill encapsulation process that is based on the surface energetic for post-bump flow. Design/methodology/approach The current model was formulated based on the modified regional segregation approach that consists of bump and post-bump regions. Both the expansion flow and the subsequent bumpless flow as integrated in the post-bump region were modelled considering the surface energy–work balance. Findings Upon validated with the past underfill experiment, the current model has the lowest root mean square deviation of 4.94 s and maximum individual deviation of 26.07%, upon compared to the six other past analytical models. Additionally, the current analytically predicted flow isolines at post-bump region are in line with the experimental observation. Furthermore, the current analytical filling times in post-bump region are in better consensus with the experimental times as compared to the previous model. Therefore, this model is regarded as an improvised version of the past filling time models. Practical implications The proposed analytical model enables the filling time determination for flip-chip underfill process at higher accuracy, while providing more precise and realistic post-bump flow visualization. This model could benefit the future underfill process enhancement and package design optimization works, to resolve the productivity issue of prolonged filling process. Originality/value The analytical underfill studies are scarce, with only seven independent analytical filling time models being developed to date. In particular, the expansion flow of detachment jump was being considered in only two previous works. Nonetheless, to the best of the authors’ knowledge, there is no analytical model that considered the surface energies during the underfill flow or based on its energy–work balance. Instead, the previous modelling on post-bump flow was based on either kinematic or geometrical that is coupled with major assumptions.


CFD letters ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 55-63
Author(s):  
Ng Fei Chong ◽  
Mohd Hafiz Zawawi ◽  
Tung Lun Hao ◽  
Mohamad Aizat Abas ◽  
Mohd Zulkifly Abdullah

Author(s):  
Y Chung ◽  
H Kim ◽  
S Choi ◽  
C Bae

Misfiring in spark ignition engines should be avoided, otherwise unburned fuel and oxygen are brought into the catalyst, and subsequent combustion greatly increases the temperature, possibly resulting in immediate damage to the catalyst. As a new concept of misfire detection method, the signal fluctuation of a wide-range oxygen sensor has been introduced to monitor the fluctuation of the oxygen concentration at the exhaust manifold confluence point. The current research aims to develop a tool that is capable of predicting the variation in oxygen concentration at the exhaust manifold confluence point, and to investigate the flow characteristics of the misfired gas in the exhaust manifold under misfiring conditions in a cylinder. The oxygen concentration at the confluence point could be predicted by comparing the gas flowrate from the misfiring cylinder with the total exhaust gas flowrate. The gas flowrates from each of the cylinders were calculated using a one-dimensional engine cycle simulation including a gas dynamic model of the intake and exhaust systems. The variation in oxygen concentration was also determined experimentally using a fast-response hydrocarbon analyser. The trend of the oxygen concentration fluctuation calculated by the analytical model was compared with the experimental results. The analytical model could duplicate the measured trend of the fluctuation of oxygen concentration at the confluence point, which was characterized by twin peaks for one misfiring. The twin peaks are mainly caused by the mixing of the misfired gas with the burned gas from normally operating cylinders. The effects of engine load and speed on the characteristics of the variation in oxygen concentration were also investigated analytically and experimentally.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chong Ng ◽  
Mohd Hafiz Zawawi ◽  
Mohamad Aizat Abas

Purpose The purpose of the study is to investigate the spatial aspects of underfill flow during the flip-chip encapsulation process, for instance, meniscus evolution and contact line jump (CLJ). Furthermore, a spatial-based void formation mechanism during the underfill flow was formulated. Design/methodology/approach The meniscus evolution of underfill fluid subtended between the bump array and the CLJ phenomenon were visualized numerically using the micro-mesh unit cell approach. Additionally, the meniscus evolution and CLJ phenomenon were modelled analytically based on the formulation of capillary physics. Meanwhile, the mechanism of void formation was explained numerically and analytically. Findings Both the proposed analytical and current numerical findings achieved great consensus and were well-validated experimentally. The variation effects of bump pitch on the spatial aspects were analyzed and found that the meniscus arc radius and filling distance increase with the pitch, while the subtended angle of meniscus arc is invariant with the pitch size. For larger pitch, the jump occurs further away from the bump entrance and takes longer time to attain the equilibrium meniscus. This inferred that the concavity of meniscus arc was influenced by the bump pitch. On the voiding mechanism, air void was formed from the air entrapment because of the fluid-bump interaction. Smaller voids tend to merge into a bigger void through necking and, subsequently, propagate along the underfill flow. Practical implications The microscopic spatial analysis of underfill flow would explain fundamentally how the bump design will affect the macroscopic filling time. This not only provides alternative visualization tool to analyze flow pattern in the industry but also enables the development of accurate analytical filling time model. Moreover, the void formation mechanism gave substantial insights to understand the root causes of void defects and allow possible solutions to be formulated to tackle this issue. Additionally, the microfluidics sector could also benefit from these spatial analysis insights. Originality/value Spatial analysis on underfill flow is scarcely conducted, as the past research studies mainly emphasized on the temporal aspects. Additionally, this work presented a new mechanism on the void formation based on the fluid-bump interaction, in which the formation and propagation of micro-voids were numerically visualized for the first time. The findings from current work provided fundamental information on the flow interaction between underfill fluid and solder bump to the package designers for optimization work and process enhancement.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Fei Chong Ng ◽  
Aizat Abas ◽  
M. Z. Abdullah

Abstract This paper presents a new analytical filling time model to predict the flow of non-Newtonian underfill fluid during flip-chip encapsulation process. The current model is formulated based on the regional segregation approach, instead of the conventional porous media approximation. In this approach, the filling times were computed separately at different filling stages, before being summed up till the required filling distance. The non-Newtonian property of underfill fluid is modeled using the conventional power-law constitutive equation. Additionally, the spatial aspects of the underfill flow were incorporated into the present analysis. For instance, the evolution of underfill menisci from convex to concave was analytically developed and the contact line jump (CLJ) criterion was improved using minimal flow assumption. Upon validated with three distinct past underfill experiments, the current analytical model is found to have the best performance as it predicted the filling times with the least discrepancy among other existing filling time models. Quantitatively, the discrepancies were averagely reduced by an absolute value of at least 8.68% and 4.90%, respectively, for the first two set of validation studies. Generally, this model is particularly useful in manufacturing lines to estimate the process time of flip-chip underfill, as well as for the optimizations of process and package design.


Author(s):  
Darryl Jennings ◽  
Sonya Smith

Abstract The goal of this research is to present an analytical model of nanostructures and study the effects of their geometry on the performance of micro channels. The pressure drop experienced by micro channels is of interest as it presents a limit on forced convection heat transfer. This work will demonstrate how the presence of nanostructures primarily affects pressure drop as well as other cooling flow characteristics. Additional work in the impact of microchannel cross-sectional geometry and friction factor formulation is provided as well. Multiple transient analyses were performed in ANSYS FLUENT to ascertain performance characteristics of microchannels without the presence of hydrophobic nanostructures. The results were compared to the analytical model developed in this study.


2004 ◽  
Vol 126 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Chyi-Lang Lai ◽  
Wen-Bin Young

During the underfill process, polymers driven by either capillary force or external pressure are filled at a low speed between the chip and substrate. Current methods treated the flow in the chip cavity as a laminar flow between parallel plates, which ignored the resistance induced by the solder bumps or other obstructions. In this study, the filling flow between solder bumps was simulated by a flow through a porous media. By using the superposition of flows through parallel plates and series of rectangular ducts, permeability of the underfill flow was fully characterized by the geometric arrangement of solder bumps and flat chips. The flow resistances caused by adjacent bumps were represented in its permeability. The model proposed in this study could provide a numerical approach to approximate and simulate the undefill process for flip-chip technology. Although the proposed model is applicable for any geometric arrangement of solder bumps, rectangular-array of solder bumps layout was used first for comparison with experimental results of other article. Comparisons of the flow-front shapes and filling time with the experimental data indicated that the flow simulation obtained from the proposed model gave a good prediction for the underfill flow.


Sign in / Sign up

Export Citation Format

Share Document