scholarly journals Coupled Multi-Robot Systems Under Linear Temporal Logic and Signal Temporal Logic Tasks

Author(s):  
Lars Lindemann ◽  
Jakub Nowak ◽  
Lukas Schonbachler ◽  
Meng Guo ◽  
Jana Tumova ◽  
...  
2020 ◽  
Vol 39 (7) ◽  
pp. 812-836
Author(s):  
Yiannis Kantaros ◽  
Michael M Zavlanos

This article proposes a new highly scalable and asymptotically optimal control synthesis algorithm from linear temporal logic specifications, called [Formula: see text] for large-Scale optimal Temporal Logic Synthesis, that is designed to solve complex temporal planning problems in large-scale multi-robot systems. Existing planning approaches with temporal logic specifications rely on graph search techniques applied to a product automaton constructed among the robots. In our previous work, we have proposed a more tractable sampling-based algorithm that builds incrementally trees that approximate the state space and transitions of the synchronous product automaton and does not require sophisticated graph search techniques. Here, we extend our previous work by introducing bias in the sampling process that is guided by transitions in the Büchi automaton that belong to the shortest path to the accepting states. This allows us to synthesize optimal motion plans from product automata with hundreds of orders of magnitude more states than those that existing optimal control synthesis methods or off-the-shelf model checkers can manipulate. We show that [Formula: see text] is probabilistically complete and asymptotically optimal and has exponential convergence rate. This is the first time that convergence rate results are provided for sampling-based optimal control synthesis methods. We provide simulation results that show that [Formula: see text] can synthesize optimal motion plans for very large multi-robot systems, which is impossible using state-of-the-art methods.


2021 ◽  
Vol 6 (2) ◽  
pp. 1327-1334
Author(s):  
Siddharth Mayya ◽  
Diego S. D'antonio ◽  
David Saldana ◽  
Vijay Kumar

Automatica ◽  
2021 ◽  
Vol 130 ◽  
pp. 109723
Author(s):  
Sahar Mohajerani ◽  
Robi Malik ◽  
Andrew Wintenberg ◽  
Stéphane Lafortune ◽  
Necmiye Ozay

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Igor M. Verner ◽  
Dan Cuperman ◽  
Michael Reitman

Education is facing challenges to keep pace with the widespread introduction of robots and digital technologies in industry and everyday life. These challenges necessitate new approaches to impart students at all levels of education with the knowledge of smart connected robot systems. This paper presents the high-school enrichment program Intelligent Robotics and Smart Transportation, which implements an approach to teaching the concepts and skills of robot connectivity, collaborative sensing, and artificial intelligence, through practice with multi-robot systems. The students used a simple control language to program Bioloid wheeled robots and utilized Phyton and Robot Operating System (ROS) to program Tello drones and TurtleBots in a Linux environment. In their projects, the students implemented multi-robot tasks in which the robots exchanged sensory data via the internet. Our educational study evaluated the contribution of the program to students’ learning of connectivity and collaborative sensing of robot systems and their interest in modern robotics. The students’ responses indicated that the program had a high positive contribution to their knowledge and skills and fostered their interest in the learned subjects. The study revealed the value of learning of internet of things and collaborative sensing for enhancing this contribution.


Sign in / Sign up

Export Citation Format

Share Document