A new analog circuit fault diagnosis approach based on GA-SVM

Author(s):  
Shaowei Chen ◽  
Shuai Zhao ◽  
Cong Wang
Author(s):  
Jianfeng Jiang

Objective: In order to diagnose the analog circuit fault correctly, an analog circuit fault diagnosis approach on basis of wavelet-based fractal analysis and multiple kernel support vector machine (MKSVM) is presented in the paper. Methods: Time responses of the circuit under different faults are measured, and then wavelet-based fractal analysis is used to process the collected time responses for the purpose of generating features for the signals. Kernel principal component analysis (KPCA) is applied to reduce the features’ dimensionality. Afterwards, features are divided into training data and testing data. MKSVM with its multiple parameters optimized by chaos particle swarm optimization (CPSO) algorithm is utilized to construct an analog circuit fault diagnosis model based on the testing data. Results: The proposed analog diagnosis approach is revealed by a four opamp biquad high-pass filter fault diagnosis simulation. Conclusion: The approach outperforms other commonly used methods in the comparisons.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2014 ◽  
Vol 981 ◽  
pp. 3-10 ◽  
Author(s):  
Yuan Gao ◽  
Cheng Lin Yang ◽  
Shu Lin Tian

Soft fault diagnosis and tolerance are two challenging problems in linear analog circuit fault diagnosis. To solve these problems, a phasor analysis based fault modeling method and its theoretical proof are presented at first. Second, to form fault feature data base, the differential voltage phasor ratio (DVPR) is decomposed into real and imaginary parts. Optimal feature selection method and testability analysis method are used to determine the optimal fault feature data base. Statistical experiments prove that the proposed fault modeling method can improve the fault diagnosis robustness. Then, Multi-class support vector machine (SVM) classifiers are used for fault diagnosis. The effectiveness of the proposed approaches is verified by both simulated and experimental results.


Measurement ◽  
2018 ◽  
Vol 121 ◽  
pp. 170-178 ◽  
Author(s):  
Guangquan Zhao ◽  
Xiaoyong Liu ◽  
Bin Zhang ◽  
Yuefeng Liu ◽  
Guangxing Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document