Discriminating the Simultaneous Occurrence of Three-Phase Induction Motor Rotor Faults and Mechanical Load Oscillations by the Instantaneous Active and Reactive Power Media Signature Analyses

2012 ◽  
Vol 59 (3) ◽  
pp. 1630-1639 ◽  
Author(s):  
M'hamed Drif ◽  
António J. Marques Cardoso
Author(s):  
Laura Collazo Solar ◽  
Angel A. Costa Montiel ◽  
Miriam Vilaragut Llanes ◽  
Vladimir Sousa Santos

In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2107 ◽  
Author(s):  
Min-Rong Chen ◽  
Huan Wang ◽  
Guo-Qiang Zeng ◽  
Yu-Xing Dai ◽  
Da-Qiang Bi

The optimal P-Q control issue of the active and reactive power for a microgrid in the grid-connected mode has attracted increasing interests recently. In this paper, an optimal active and reactive power control is developed for a three-phase grid-connected inverter in a microgrid by using an adaptive population-based extremal optimization algorithm (APEO). Firstly, the optimal P-Q control issue of grid-connected inverters in a microgrid is formulated as a constrained optimization problem, where six parameters of three decoupled PI controllers are real-coded as the decision variables, and the integral time absolute error (ITAE) between the output and referenced active power and the ITAE between the output and referenced reactive power are weighted as the objective function. Then, an effective and efficient APEO algorithm with an adaptive mutation operation is proposed for solving this constrained optimization problem. The simulation and experiments for a 3kW three-phase grid-connected inverter under both nominal and variable reference active power values have shown that the proposed APEO-based P-Q control method outperforms the traditional Z-N empirical method, the adaptive genetic algorithm-based, and particle swarm optimization-based P-Q control methods.


Author(s):  
K. Vinoth Kumar ◽  
Prawin Angel Michael

This chapter deals with the implementation of a PC-based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three phase voltages and currents from a 3.3KW squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure. The trained network is placed in a Lab VIEW-based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor. The complete system is successfully tested in real time by creating different faults on the motor.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3617
Author(s):  
Ding Wang ◽  
Yangwu Shen ◽  
Zhen Hu ◽  
Ting Cui ◽  
Xiaoming Yuan

Short-term voltage instability has a sensational effect once it occurs with massive loss of load, possibly area instability, and voltage collapse. This paper analyzes the short-term voltage instability caused by induction motor from the viewpoint of active and reactive power joint balancing. The analysis method is based on (1) the reactive power balancing between system supply and induction motor demand, and (2) the active power balancing between air-gap power and mechanical power, which is expressed by the region of rotor acceleration and deceleration in the Q-V plane. With the region of rotor acceleration and deceleration in the Q-V plane and the reactive power balancing, the movement direction of the operating point can be visually observed in the Q-V plane, thereby achieving a clear comprehension of physical properties behind the short-term voltage instability phenomenon. Furthermore, the instability mechanisms of two kinds of grid-connected induction motor operation conditions after a large disturbance are discussed to explain the basic theory of the analysis method and to provide examples of its application. Time-domain simulations are presented for a single-load infinite-bus system to validate the analyses.


Sign in / Sign up

Export Citation Format

Share Document