Indoor Localization Based on Channel State Information

Author(s):  
Shabir Abdul Samadh ◽  
Qianyu Liu ◽  
Xue Liu ◽  
Negar Ghourchian ◽  
Michel Allegue
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


2019 ◽  
Vol 15 (4) ◽  
pp. 155014771984409 ◽  
Author(s):  
Xiaochao Dang ◽  
Jiaju Ren ◽  
Zhanjun Hao ◽  
Yili Hei ◽  
Xuhao Tang ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 1995
Author(s):  
David Sánchez-Rodríguez ◽  
Miguel A. Quintana-Suárez ◽  
Itziar Alonso-González ◽  
Carlos Ley-Bosch ◽  
Javier J. Sánchez-Medina

In recent years, indoor localization systems based on fingerprinting have had significant advances yielding high accuracies. Those approaches often use information about channel communication, such as channel state information (CSI) and received signal strength (RSS). Nevertheless, these features have always been employed separately. Although CSI provides more fine-grained physical layer information than RSS, in this manuscript, a methodology for indoor localization fusing both features from a single access point is proposed to provide a better accuracy. In addition, CSI amplitude information is processed to remove high variability information that can negatively influence location estimation. The methodology was implemented and validated in two scenarios using a single access point located in two different positions and configured in 2.4 and 5 GHz frequency bands. The experiments show that the methodology yields an average error distance of about 0.1 m using the 5 GHz band and a single access point.


Sign in / Sign up

Export Citation Format

Share Document