Lipase-catalyzed Transesterification of Medium-chain Triacylglycerols and a Fully Hydrogenated Soybean Oil

2006 ◽  
Vol 70 (6) ◽  
pp. c365-c372 ◽  
Author(s):  
Arnoldo Lopez-Hernandez ◽  
Hugo S. Garcia ◽  
Charles G. Hill
1991 ◽  
Vol 39 (3) ◽  
pp. 542-548 ◽  
Author(s):  
Elizabeth M. Calvey ◽  
Richard E. McDonald ◽  
Samuel W. Page ◽  
Magdi M. Mossoba ◽  
Larry T. Taylor

2018 ◽  
Vol 22 ◽  
pp. 91-98 ◽  
Author(s):  
Yue Zhao ◽  
Yue Ren ◽  
Ruchun Zhang ◽  
Lu Zhang ◽  
Dianyu Yu ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 832
Author(s):  
Jorge Eduardo Esquerre Verastegui ◽  
Marco Antonio Zamora Antuñano ◽  
Juvenal Rodríguez Resendiz ◽  
Raul García García ◽  
Pedro Jacinto Paramo Kañetas ◽  
...  

Although hydrogen is the most abundant element in the universe, it is not possible to find it in its purest state in nature. In this study, two-stage experimentation was carried out. The first stage was hydrogen production. The second stage was an electrochemical process to hydrogenate soybean oil in a PEM fuel cell. In the fist stage a Zirfon Perl UTP 500 membrane was used in an alkaline hydrolizer of separated gas to produce hydrogen, achieving 9.6 L/min compared with 5.1 L/min, the maximum obtained using a conventional membrane. The hydrogen obtained was used in the second stage to feed the fuel cell hydrogenating the soybean oil. Hydrogenated soybean oil showed a substantial diminished iodine index from 131 to 54.85, which represents a percentage of 58.13. This happens when applying a voltage of 90 mV for 240 min, constant temperature of 50 °C and one atm. This result was obtained by depositing 1 mg of Pt/cm 2 in the cathode of the fuel cell. This system represents a viable alternative for the use of hydrogen in energy generation.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3526
Author(s):  
Panos Papandreou ◽  
Aristea Gioxari ◽  
Dimitrios Ntountaniotis ◽  
Olga-Natalia Korda ◽  
Maria Skouroliakou ◽  
...  

Intravenous administration of pure soybean oil emulsions high in linoleic acid may lead to inflammation and lipid peroxidation in preterm neonates. We aimed to investigate the effects of a medium-chain triglyceride (MCT)/ω-3 polyunsaturated fatty acid (PUFA)-enriched intravenous fat emulsion (IVFE) on plasma fatty acid (FA) profile and serum interleukin-6 (IL-6) in preterm neonates. In this double-blind randomized study, 92 preterm neonates (gestational age < 32 weeks, birth weight < 1500 g) were assigned to receive either MCT/ω-3 PUFA-enriched IVFE (Intervention Group) or soybean oil-based IVFE (Control Group). Levels of FAs were measured at baseline (day 0) and day 15 of parenteral nutrition with gas-chromatography mass-spectrometry. Serum IL-6 was measured with sandwich ELISA in 59 neonates. Plasma FAs changed significantly over time; the MCT/ω-3 PUFA-IVFE group showed higher ω-3 PUFAs (p = 0.031), eicosapentaenoic acid (p = 0.000), and oleic acid (p = 0.003), and lower ω-6/ω-3 PUFAs ratio (p = 0.001) and ω-6 PUFAs (p = 0.023) compared to control group. Linoleic acid was higher in the soybean oil (SO)-based IVFE arm compared to the MCT/ω-3 PUFAs-IVFE arm (p = 0.006). Both fat emulsion types decreased IL-6 compared to baseline, but changes were insignificant between groups. Administration of MCT/ω-3 PUFA-enriched IVFE in preterm neonates is beneficial in changing the FA profile consistent with attenuated inflammatory response.


2009 ◽  
Vol 42 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Ana Paula B. Ribeiro ◽  
Renato Grimaldi ◽  
Luiz A. Gioielli ◽  
Lireny A.G. Gonçalves

Sign in / Sign up

Export Citation Format

Share Document