scholarly journals The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis

2010 ◽  
Vol 218 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Olga Panagiotopoulou ◽  
Kornelius Kupczik ◽  
Samuel N. Cobb
2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2012 ◽  
Vol 20 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Carlos Marcelo Archangelo ◽  
Eduardo Passos Rocha ◽  
João Antônio Pereira ◽  
Manoel Martin Junior ◽  
Rodolfo Bruniera Anchieta ◽  
...  

2019 ◽  
pp. 0000-0000 ◽  
Author(s):  
Karina Albino Lencioni ◽  
Pedro Yoshito Noritomi ◽  
Ana Paula Macedo ◽  
Ricardo Faria Ribeiro ◽  
Rossana Pereira Almeida

This study analyzed the biomechanical behavior of rigid and non-rigid tooth-implant supported fixed partial dentures. Different implants were used in order to observe the load distribution over teeth, implants, and adjacent bone using three-dimensional finite element analysis. A simulation of tooth loss of the first and second right molars was created with an implant placed in the second right molar and a prepared tooth with simulated periodontal ligament (PDL) in the second right premolar. Configurations of two types of implants and their respective abutments, i.e., external hexagon (EX) and Morse taper (MT), were transformed into a 3D format. Metal-ceramic fixed partial dentures were constructed with rigid and non-rigid connections. Mesh generation and data processing were performed on the 3D FEA results. Static loading of 50 N (premolar) and 100 N (implant) were applied. When an EX implant was used, with a rigid or non-rigid connection, there was intrusion of the tooth in the distal direction with flexion of the periodontal ligament. Tooth intrusion did not occur when the MT implant was used independent of a rigid or non-rigid connection. The rigid or non-rigid connection resulted in a higher incidence of compressive forces at the cortical bone and stress in the abutment/pontic area, regardless of whether EX or MT implants were used. MT implants have a superior biomechanical performance in tooth-implant supported fixed partial dentures. This prevents the intrusion of the tooth independent of the connection. Both types of implants that were studied caused a greater tendency of compressive forces at the crestal area.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Ariel Adriano Reyes Pacheco ◽  
Armando Yukio Saga ◽  
Key Fonseca de Lima ◽  
Victor Nissen Paese

ABSTRACT Aim By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. Materials and methods A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circularshaped corticotomy in the cortical bone of the edentulous space of the first premolar. Results There was no difference in stress distribution among the different corticotomy formats. Conclusion Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. Clinical significance From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs. How to cite this article Pacheco AAR, Saga AY, de Lima KF, Paese VN, Tanaka OM. Stress Distribution Evaluation of the Periodontal Ligament in the Maxillary Canine for Retraction by Different Alveolar Corticotomy Techniques: A Threedimensional Finite Element Analysis. J Contemp Dent Pract 2016;17(1):32-37.


Sign in / Sign up

Export Citation Format

Share Document