Land‐cover/use transitions in the binational Tijuana River watershed during a period of rapid industrialization

2008 ◽  
Vol 11 (1) ◽  
pp. 107-116 ◽  
Author(s):  
L. Ojeda‐Revah ◽  
G. Bocco ◽  
E. Ezcurra ◽  
I. Espejel
Author(s):  
Kalyan Mahata ◽  
Subhasish Das ◽  
Rajib Das ◽  
Anasua Sarkar

Image segmentation among overlapping land cover areas in satellite images is a very crucial task. Detection of belongingness is the important problem for classifying mixed pixels. This paper proposes an approach for pixel classification using a hybrid approach of Fuzzy C-Means and Cellular automata methods. This new unsupervised method is able to detect clusters using 2-Dimensional Cellular Automata model based on fuzzy segmentations. This approach detects the overlapping regions in remote sensing images by uncertainties using fuzzy set membership values. As a discrete, dynamical system, cellular automaton explores uniformly interconnected cells with states. In the second phase of our method, we utilize a 2-dimensional cellular automata to prioritize allocations of mixed pixels among overlapping land cover areas. We experiment our method on Indian Ajoy river watershed area. The clustered regions are compared with well-known FCM and K-Means methods and also with the ground truth knowledge. The results show the superiority of our new method.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0229298 ◽  
Author(s):  
Vitus Tankpa ◽  
Li Wang ◽  
Raphael Ane Atanga ◽  
Alfred Awotwi ◽  
Xiaomeng Guo

2013 ◽  
Vol 17 (8) ◽  
pp. 1-15 ◽  
Author(s):  
Wondmagegn Yigzaw ◽  
Faisal Hossain ◽  
Alfred Kalyanapu

Abstract Since historical (predam) data are traditionally the sole criterion for dam design, future (postdam) meteorological and hydrological variability due to land-use and land-cover change cannot be considered for assessing design robustness. For example, postdam urbanization within a basin leads to definite and immediate increase in direct runoff and reservoir peak inflow. On the other hand, urbanization can strategically (i.e., gradually) alter the mesoscale circulation patterns leading to more extreme rainfall rates. Thus, there are two key pathways (immediate or strategic) by which the design flood magnitude can be compromised. The main objective of the study is to compare the relative contribution to increase in flood magnitudes through direct effects of land-cover change (urbanization and less infiltration) with gradual climate-based effects of land-cover change (modification in mesoscale storm systems). The comparison is cast in the form of a sensitivity study that looks into the response to the design probable maximum flood (PMF) from probable maximum precipitation (PMP). Using the American River watershed (ARW) and Folsom Dam as a case study, simulated peak floods for the 1997 (New Year's) flood event show that a 100% impervious watershed has the potential of generating a flood that is close to design PMF. On the other hand, the design PMP produces an additional 1500 m3 s−1 peak flood compared to the actual PMF when the watershed is considered 100% impervious. This study points to the radical need for consideration future land-cover changes up front during the dam design and operation formulation phase by considering not only the immediate effects but also the gradual climatic effects on PMF. A dynamic dam design procedure should be implemented that takes into account the change of land–atmospheric and hydrological processes as a result of land-cover modification rather than relying on historical records alone.


Tropics ◽  
2004 ◽  
Vol 13 (4) ◽  
pp. 235-248 ◽  
Author(s):  
Ahmad Jailani Muhamed YUNUS ◽  
Nobukazu NAKAGOSHI ◽  
Ab Latif IBRAHIM

2014 ◽  
Vol 18 (9) ◽  
pp. 3711-3732 ◽  
Author(s):  
A. T. Woldemichael ◽  
F. Hossain ◽  
R. Pielke Sr.

Abstract. This study adopted a differential land-use/land-cover (LULC) analysis to evaluate dam-triggered land–atmosphere interactions for a number of LULC scenarios. Two specific questions were addressed: (1) can dam-triggered LULC heterogeneities modify surface and energy budget, which, in turn, change regional convergence and precipitation patterns? (2) How extensive is the modification in surface moisture and energy budget altered by dam-triggered LULC changes occurring in different climate and terrain features? The Regional Atmospheric Modeling System (RAMS, version 6.0) was set up for two climatologically and topographically contrasting regions: the American River watershed (ARW), located in California, and the Owyhee River watershed (ORW), located in eastern Oregon. For the selected atmospheric river precipitation event of 29 December 1996 to 3 January 1997, simulations of three pre-defined LULC scenarios are performed. The definition of the scenarios are (1) the "control" scenario, representing the contemporary land use, (2) the "pre-dam" scenario, representing the natural landscape before the construction of the dams and (3) the "non-irrigation" scenario, representing the condition where previously irrigated landscape in the control is transformed to the nearby land-use type. Results indicated that the ARW energy and moisture fluxes were more extensively affected by dam-induced changes in LULC than the ORW. Both regions, however, displayed commonalities in the modification of land–atmosphere processes due to LULC changes, with the control–non-irrigation scenario creating more change than the control–pre-dam scenarios. These commonalities were: (1) the combination of a decrease in temperature (up to 0.15 °C) and an increase at dew point (up to 0.25 °C) was observed; (2) there was a larger fraction of energy partitioned to latent heat flux (up to 10 W m−2) that increased the amount of water vapor in the atmosphere and resulted in a larger convective available potential energy (CAPE); (3) low-level wind-flow variation was found to be responsible for pressure gradients that affected localized circulations, moisture advection and convergence. At some locations, an increase in wind speed up to 1.6 m s−1 maximum was observed; (4) there were also areas of well-developed vertical motions responsible for moisture transport from the surface to higher altitudes that enhanced precipitation patterns in the study regions.


Sign in / Sign up

Export Citation Format

Share Document