scholarly journals Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life

2011 ◽  
Vol 7 ◽  
pp. 17-26 ◽  
Author(s):  
Robert A. Gibson ◽  
Bev Muhlhausler ◽  
Maria Makrides
2008 ◽  
Vol 52 (No. 7) ◽  
pp. 203-213 ◽  
Author(s):  
D. Schneideroá ◽  
J. Zelenka ◽  
E. Mrkvicová

We studied the effect of different levels of linseed oils made either of the flax cultivar Atalante with a high content of &alpha;-linolenic acid (612 g/kg) or of the cultivar Lola with a predominating content of linoleic acid (708 g/kg) in a chicken diet upon the fatty acid pattern in meat. Cockerels Ross 308 were fed the diets containing 1, 3, 5 or 7 per cent of oil in the last 15 days of fattening. Breast meat (BM) and thigh meat (TM) without skin of 8 chickens from each dietary group were used for analyses. The relative proportions of fatty acids were expressed as percentages of total determined fatty acids. When feeding Atalante oil, the proportions of n-6 fatty acids were highly significantly lower while those of n-3 fatty acids were higher; the ratio of n-6/n-3 polyunsaturated fatty acids in meat was narrower (<i>P</i> < 0.001) than in chickens fed oil with a low content of &alpha;-linolenic acid. In BM and TM, the relative proportions of &alpha;-linolenic and &gamma;-linolenic acids were nearly the same, the proportion of linoleic acid in BM was lower, and the proportions of the other polyunsaturated fatty acids in BM were higher than in TM. In BM, the ratio of n-6/n-3 polyunsaturated fatty acids was significantly (<i>P</i> < 0.001) more favourable than that found in TM. The relative proportions of total saturated and monounsaturated fatty acids in meat decreased and those of polyunsaturated fatty acids increased significantly (<i>P</i> < 0.01) in dependence on the increasing level of dietary oils. When feeding Atalante oil, a significant increase in the proportion of linoleic acid in BM but not in TM was observed. The proportions of the other n-6 fatty acids decreased and those of all determined n-3 fatty acids, with the exception of docosahexaenoic acid, significantly increased with the increasing level of oil in the diet. When feeding Lola oil, its increasing content in the diet increased the relative proportion of linoleic acid as well as its elongation to &gamma;-linolenic acid; however, the proportions of arachidonic and adrenic acid did not change significantly (<i>P</i> > 0.05). The proportion of &alpha;-linolenic acid increased in both BM and TM. The proportion of eicosapentaenoic and clupanodonic acids in BM significantly decreased. The ratio of n-6 to n-3 polyunsaturated fatty acids ranged from 0.9 to 13.6 and from 1.0 to 17.2 in BM and TM, respectively. An increase in the level of Lola oil in the diet by 1% caused that the n-6/n-3 polyunsaturated fatty acid ratio extended by 1.00 and 1.19 units in BM and TM, respectively. Dependences of n-6/n-3 ratio on the level of Atalante oil were expressed by equations of convex parabolas with minima at the level of oil 5.8 and 5.9% for BM and TM, respectively. By means of the inclusion of linseed oil with a high content of &alpha;-linolenic acid in the feed mixture it would be possible to produce poultry meat as a functional food with a very narrow ratio of n-6/n-3 polyunsaturated fatty acids.


2019 ◽  
Vol 59 (4) ◽  
pp. 1763-1766 ◽  
Author(s):  
Yasutake Tomata ◽  
Susanna C. Larsson ◽  
Sara Hägg

Abstract Purpose Observational studies have suggested that polyunsaturated fatty acids (PUFAs) may decrease Alzheimer’s disease (AD) risk. In the present study, we examined this hypothesis using a Mendelian randomization analysis. Methods We used summary statistics data for single-nucleotide polymorphisms associated with plasma levels of n-6 PUFAs (linoleic acid, arachidonic acid) and n-3 PUFAs (alpha-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid), and the corresponding data for AD from a genome-wide association meta-analysis of 63,926 individuals (21,982 diagnosed AD cases, 41,944 controls). Results None of the genetically predicted PUFAs was significantly associated with AD risk; odds ratios (95% confidence interval) per 1 SD increase in PUFA levels were 0.98 (0.93, 1.03) for linoleic acid, 1.01 (0.98, 1.05) for arachidonic acid, 0.96 (0.88, 1.06) for alpha-linolenic acid, 1.03 (0.93, 1.13) for eicosapentaenoic acid, 1.03 (0.97, 1.09) for docosapentaenoic acid, and 1.01 (0.81, 1.25) for docosahexaenoic acid. Conclusions This study did not support the hypothesis that PUFAs decrease AD risk.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Ingeborg Hanbauer ◽  
Ignacio Rivero-Covelo ◽  
Ekrem Maloku ◽  
Adam Baca ◽  
Qiaoyan Hu ◽  
...  

Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1), whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3), docosapentaenoic acid (22:5n3), and docosahexaenoic acid (22:6n3) were significantly decreased whereas arachidonic acid (20:4n6) was significantly increased. In addition, low n-3 fatty acid-fed mice had liver steatosis, heart, and kidney hypertrophy. Hence, reducing dietary α-linolenic acid, from 1.02 energy% to 0.16 energy% combined with raising linoleic acid intake resulted in obesity and had detrimental consequences on organ function.


2005 ◽  
Vol 85 (3) ◽  
pp. 413-416 ◽  
Author(s):  
F. B. Cavalieri ◽  
G. T. Santos ◽  
M. Matsushita ◽  
H. V. Petit ◽  
L. P. Rigolon ◽  
...  

Cows were fed whole flaxseed or calcium salts of soybean oil as a fat source. Cows fed flaxseed had lower (P < 0.01) milk yield and higher (P < 0.01) percentages of fat and protein than cows fed calcium salts. Feeding whole flaxseed and calcium salts of soybean oil increased, respectively, the concentrations of alpha-linolenic acid and conjugated linoleic acid in milk. Key words: Flaxseed, fatty acids, fat supplement


Sign in / Sign up

Export Citation Format

Share Document