A NEW REGIONAL PETROLEUM SYSTEMS MODEL FOR CENTRAL ITALY AND THE CENTRAL ADRIATIC SEA SUPPORTED BY BASIN MODELLING AND AN ANALYSIS OF HYDROCARBON OCCURRENCES

2021 ◽  
Vol 44 (4) ◽  
pp. 461-485
Author(s):  
Lorenzo Lipparini ◽  
Andrea D'Ambrosio ◽  
Fabio Trippetta ◽  
Sabina Bigi ◽  
Jan Federik Derks ◽  
...  
2021 ◽  
Author(s):  
Antonio Ricchi ◽  
Vincenzo Mazzarella ◽  
Lorenzo Sangelantoni ◽  
Gianluca Redaelli ◽  
Rossella Ferretti

<div> <p><span>A severe weather events hit Italy on July 9-10, 2019 causing heavy damages by the falling of large-size hail. A trough from Northern Europe affected Italy and the Balkans advecting cold air on the Adriatic Sea. The intrusion of relatively cold and dry air on the Adriatic Sea, in a first stage through the "Bora jets" generated by the Dinaric Alps gave rise to a frontal structure on the ground, which rapidly moved from North to South Adriatic. The large thermal gradient (also with the sea surface), the interaction with the complex orography and the coastal zone, generated several storm structures along the eastern Italian coast. In particular, on 10 July 2019 between 8UTC and 12UTC a deep convective cell (probably a supercell) developed along the coast North of the city of Pescara, producing intense rainfall (accumulated rainfall reaching 130 mm/3h) and a violent hailstorm with hailstones larger than 10 cm in diameter. The storm quickly moved southward, evolving into a complex multicellular structure clearly visible by observing radar data. In this work the frontal dynamics and the genesis of the storm cell are investigated using the numerical model WRF (Weather Research and Forecasting system). Numerical experiments are carried out using a 1 km grid on Central Italy, initialized using the ECMWF dataset and the Sea Surface Temperature (SST) taken by MFS-CMEMS Copernicus dataset. The sensitivity study investigated both the impact of the initial conditions, the quality and the anomaly of the SST on the Adriatic basin in those days. Furthermore, in order to quantify the importance of the use of different microphysics, Planetary boundary Layer (PBL) and radiative schemes, several experiments are performed. The role of orography in the development and location of the convective cell is also investigated. Preliminary results show that initialization and SST played a fundamental role. In particular, the initialization several hours before the event, coupled with a detailed SST allows to correctly reproduce the atmospheric fields. The microphysics scheme turned out to play a key role for this event by showing a significant greater impact than the PBL, in terms of frontal genesis on both the synoptic and local scale. </span></p> </div>


2020 ◽  
Author(s):  
Antonio Ricchi ◽  
Vincenzo mazzarella ◽  
Lorenzo Sangelantoni ◽  
Gianluca Redaelli ◽  
Rossella Ferretti

<p>A severe weather events hit Italy on July 9-10, 2019 causing heavy damages by the falling of large-size hail. A trough from Northern Europe affected Italy and the Balkans advecting cold air on the Adriatic Sea. The intrusion of relatively cold and dry air on the Adriatic Sea, in a first stage through the "Bora jets" generated by the Dinaric Alps gave rise to a frontal structure on the ground, which rapidly moved from North to South Adriatic. The large thermal gradient (also with the sea surface), the interaction with the complex orography and the coastal zone, generated several storm structures along the eastern Italian coast.  In particular, on 10 July 2019 between 8UTC and 12UTC a deep convective cell (probably a supercell) developed along the coast North of the city of Pescara, producing intense rainfall (accumulated rainfall reaching 130 mm/3h) and a violent hailstorm with hailstones larger than 10 cm in diameter. The storm quickly moved southward, evolving into a complex multicellular structure clearly visible by observing radar data.  In this work the frontal dynamics and the genesis of the storm cell are investigated using the numerical model WRF (Weather Research and Forecasting system). Numerical experiments are carried out using a 1 km grid on Central Italy, initialized using the ECMWF dataset and the Sea Surface Temperature (SST) taken by MFS-CMEMS Copernicus dataset. The sensitivity study investigated both the impact of the initial conditions, the quality and the anomaly of the SST on the Adriatic basin in those days. Furthermore, in order to quantify the importance of the use of different microphysics, Planetary boundary Layer (PBL) and radiative schemes, several experiments are performed. The role of orography in the development and location of the convective cell is also investigated. Preliminary results show that initialization and SST played a fundamental role. In particular, the initialization several hours before the event, coupled with a detailed SST allows to correctly reproduce the atmospheric fields. The microphysics scheme turned out to play a key role for this event by showing a significant greater impact than the PBL, in terms of frontal genesis on both the synoptic and local scale.</p>


2015 ◽  
Vol 78 (9) ◽  
pp. 1719-1728 ◽  
Author(s):  
PIERINA VISCIANO ◽  
GIAMPIERO SCORTICHINI ◽  
GIOVANNA SUZZI ◽  
GIANFRANCO DILETTI ◽  
MARIA SCHIRONE ◽  
...  

Concentrations of pollutants with regulatory limits were determined in specimens of Chamelea gallina, a species of clam collected along the Abruzzi coastal region of the central Adriatic Sea. Nine sampling sites were selected to evaluate the distribution of contaminants in the environment and the health risk for consumers. The concentrations of all the examined compounds were lower than the maximums set by European legislation. Polycyclic aromatic hydrocarbons and total mercury were below the detection limit (0.18 μg/kg for benzo[a]anthracene, 0.30 μg/kg for chrysene, 0.12 μg/kg for benzo[b]fluoranthene, 0.08 μg/kg for benzo[a]pyrene, and 0.0050 mg/kg for total mercury) in all the analyzed samples. Mean concentrations of lead and cadmium were 0.104 and 0.110 mg/kg, respectively. Of the non–dioxin-like polychlorinated biphenyls, PCB-153, PCB-180, and PCB-138 were the most abundant at all sampling sites (1a to 9a) at 0.25 mi (ca. 0.4 km) and at some sampling sites (1b, 2b, 3b, 5b and 7b) at 0.35 mi (ca. 0.56 km). Principal component analysis revealed that the concentrations of dioxin-like polychlorinated biphenyls were similar at the majority of sampling sites, and O8CDD and 2,3,7,8-T4CDF were the predominant dioxin congeners.


Author(s):  
C. Castagnac ◽  
E. Mavridou ◽  
G. Badalini ◽  
M. Moktar Mohamed ◽  
S. Ahmed Mousa ◽  
...  

2006 ◽  
Vol 7 ◽  
pp. 199-204 ◽  
Author(s):  
S. De Zolt ◽  
P. Lionello ◽  
P. Malguzzi ◽  
A. Nuhu ◽  
A. Tomasin

Abstract. This study analyses the extreme event which took place on 4 November 1966, when a storm produced intense and persistent precipitation over northern and central Italy and an extreme surge in the northern Adriatic Sea, causing casualties and huge damages. Numerical simulations with a regional atmospheric model have been performed to reconstruct the phenomenology of the event. Results have been compared with observations. This study shows that the choice of the global fields for initial and boundary conditions is crucial for the quality of the reconstruction. The simulation is reasonably accurate if they are extracted from the NCEP re-analysis, while it is not satisfactory if ERA-40 data are used, though fields have a higher resolution in the ERA-40 than in the NCEP set of data. The internal physics of the model plays a smaller role in the reproduction of the dynamics of the event.


2020 ◽  
Vol 43 (2) ◽  
pp. 133-149
Author(s):  
N. R. J. Goodwin ◽  
N. Abdullayev ◽  
A. Javadova ◽  
H. Volk ◽  
G. Riley

2010 ◽  
Vol 50 (1) ◽  
pp. 511 ◽  
Author(s):  
Natt Arian ◽  
Peter Tingate ◽  
Richard Hillis ◽  
Geoff O'Brien

Petroleum generation, expulsion, migration and accumulation have been modelled in 3D at basin-scale for the Bass Basin, Tasmania. The petroleum systems model shows several source rocks of different ages have generated and expelled sufficient hydrocarbons to fill structures in the basin; however, the lithologies and fault properties in the model result in generally limited migration after hydrocarbon expulsion started. Impermeable faults, together with several fine-gained sealing facies in the Lower and Middle Eastern View Group (EVG) have resulted in minor vertical hydrocarbon migration in the lower parts of the EVG. An exception occurs in the northeastern part of the basin, where strike-slip movement of suitably oriented faults during Miocene reactivation resulted in breaches in deeper accumulations and migration to upper reservoir sands and, in several cases, leakage through the regional seal. The Middle Eastern View Group source rocks have produced most of the gas in the basin. Oil appears to be largely limited to the Yolla Trough, related to the relatively high thermal maturation of Narimba Sequence source rocks. In general, most of the hydrocarbon expelled from the Otway Megasequence occurred prior to the regional seal being deposited; however, modelling predicts it can contribute to the hydrocarbon inventory of the Cape Wickham Sub-basin. In particular, the modelling predicted an Otway sourced accumulation at the site of the recently drilled Rockhopper–1. In the Durroon Sub-basin in the Bark Trough, the Otway Megasequence is predicted to be the main source of accumulations. The modelling has provided detailed insights into migration in the existing plays and has allowed assessment of the reasons for previous exploration failures (e.g., a migration shadow at Toolka–1) and to suggest new locations with viable migration histories. Reservoir sands of the Upper EVG are only prospective in the Yolla and Cormorant troughs where charged by Early Eocene sources; however, Miocene reactivation is a major exploration risk in this area.


Sign in / Sign up

Export Citation Format

Share Document