scholarly journals FRAMEWORK OF CONTROLLING 3D VIRTUAL HUMAN EMOTIONAL WALKING USING BCI

2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Faris Amin M. Abuhashish ◽  
Hoshang Kolivand ◽  
Mohd Shahrizal Sunar ◽  
Dzulkifli Mohamad

A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique.

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012044
Author(s):  
Lingzhi Chen ◽  
Wei Deng ◽  
Chunjin Ji

Abstract Pattern Recognition is the most important part of the brain computer interface (BCI) system. More and more profound learning methods were applied in BCI to increase the overall quality of pattern recognition accuracy, especially in the BCI based on Electroencephalogram (EEG) signal. Convolutional Neural Networks (CNN) holds great promises, which has been extensively employed for feature classification in BCI. This paper will review the application of the CNN method in BCI based on various EEG signals.


A brain-computer interface (BCI) gives a correspondence channel that interconnects the mind with an outside device. The most generally utilized system for getting BCI control signals from the brain is the electroencephalogram (EEG). In the proposed paper, BCI framework towards an EEG chronicles are reviewed into and found that the expansion of a counterfeit motion toward it, which is brought about by eye flickers, eye development, muscle and cardiovascular commotion, just as non-natural sources (e.g., control line clamor). According to the writing survey it is discovered that these issues can be overwhelmed by utilizing mix of wavelet deterioration, independent component analysis (ICA), and thresholding


2021 ◽  
Vol 15 ◽  
Author(s):  
Xin Huang ◽  
Yilu Xu ◽  
Jing Hua ◽  
Wenlong Yi ◽  
Hua Yin ◽  
...  

In an electroencephalogram- (EEG-) based brain–computer interface (BCI), a subject can directly communicate with an electronic device using his EEG signals in a safe and convenient way. However, the sensitivity to noise/artifact and the non-stationarity of EEG signals result in high inter-subject/session variability. Therefore, each subject usually spends long and tedious calibration time in building a subject-specific classifier. To solve this problem, we review existing signal processing approaches, including transfer learning (TL), semi-supervised learning (SSL), and a combination of TL and SSL. Cross-subject TL can transfer amounts of labeled samples from different source subjects for the target subject. Moreover, Cross-session/task/device TL can reduce the calibration time of the subject for the target session, task, or device by importing the labeled samples from the source sessions, tasks, or devices. SSL simultaneously utilizes the labeled and unlabeled samples from the target subject. The combination of TL and SSL can take advantage of each other. For each kind of signal processing approaches, we introduce their concepts and representative methods. The experimental results show that TL, SSL, and their combination can obtain good classification performance by effectively utilizing the samples available. In the end, we draw a conclusion and point to research directions in the future.


Author(s):  
Igwe J. S. ◽  
Inyiama ◽  
OgbuNwani Henry

Every discovery is geared towards problem solving. This is manifested by the advent of brain computer interface (BCI). Brain computer interface (BCI) is a field of study concern with the detection and utilization of brain signals in establishing the communication path between the brain and the computer system. The knowledge of this science has helped in no small measure in providing solutions to several challenges befalling man and his environment. In this paper, we explored those areas where BCI has proved useful and pointed out as well its possible application in diagnosis of stroke disease. The discourse was centered on detection of electrochemical signals from the brain called electroencephalogram (EEG). The research work also highlighted the technique of recording brain activity via electroencephalogram and using it in making deduction on the status of stroke attack on individual. This can either be normal or abnormal. The presence of delta or theta wave in an awaked adult suggests an abnormal situation. While the observance of alpha, beta and gamma waves are interpreted as normal.


2013 ◽  
Vol 459 ◽  
pp. 228-231 ◽  
Author(s):  
Hao Yang ◽  
Song Wu

Electroencephalogram (EEG) is generally used in Brain-Computer Interface (BCI) applications to measure the brain signals. However, the multichannel EEG signals characterized by unrelated and redundant features will deteriorate the classification accuracy. This paper presents a method based on common spatial pattern (CSP) for feature extraction and support vector machine with genetic algorithm (SVM-GA) as a classifier, the GA is used to optimize the kernel parameters setting. The proposed algorithm is performed on data set Iva of BCI Competition III. Results show that the proposed method outperforms the conventional linear discriminant analysis (LDA) in average classification performance.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


2021 ◽  
Vol 11 (12) ◽  
pp. 2918-2927
Author(s):  
A. Shankar ◽  
S. Muttan ◽  
D. Vaithiyanathan

Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain, and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.


2014 ◽  
Vol 490-491 ◽  
pp. 1374-1377 ◽  
Author(s):  
Xiao Yan Qiao ◽  
Jia Hui Peng

It is a significant issue to accurately and quickly extract brain evoked potentials under strong noise in the research of brain-computer interface technology. Considering the non-stationary and nonlinearity of the electroencephalogram (EEG) signal, the method of wavelet transform is adopted to extract P300 feature from visual, auditory and visual-auditory evoked EEG signal. Firstly, the imperative pretreatment to EEG acquisition signals was performed. Secondly, respectivly obtained approximate and detail coefficients of each layer, by decomposing the pretreated signals for five layers using wavelet transform. Finally, the approximate coefficients of the fifth layer were reconstructed to extract P300 feature. The results have shown that the method can effectively extract the P300 feature under the different visual-auditory stimulation modes and lay a foundation for processing visual-auditory evoked EEG signals under the different mental tasks.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shih Chung Chen ◽  
Aaron Raymond See ◽  
Yeou Jiunn Chen ◽  
Chia Hong Yeng ◽  
Chih Kuo Liang

People suffering from paralysis caused by serious neural disorder or spinal cord injury also need to be given a means of recreation other than general living aids. Although there have been a proliferation of brain computer interface (BCI) applications, developments for recreational activities are scarcely seen. The objective of this study is to develop a BCI-based remote control integrated with commercial devices such as the remote controlled Air Swimmer. The brain is visually stimulated using boxes flickering at preprogrammed frequencies to activate a brain response. After acquiring and processing these brain signals, the frequency of the resulting peak, which corresponds to the user’s selection, is determined by a decision model. Consequently, a command signal is sent from the computer to the wireless remote controller via a data acquisition (DAQ) module. A command selection training (CST) and simulated path test (SPT) were conducted by 12 subjects using the BCI control system and the experimental results showed a recognition accuracy rate of 89.51% and 92.31% for the CST and SPT, respectively. The fastest information transfer rate demonstrated a response of 105 bits/min and 41.79 bits/min for the CST and SPT, respectively. The BCI system was proven to be able to provide a fast and accurate response for a remote controller application.


Sign in / Sign up

Export Citation Format

Share Document