scholarly journals Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving

2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.

2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Faris Amin M. Abuhashish ◽  
Hoshang Kolivand ◽  
Mohd Shahrizal Sunar ◽  
Dzulkifli Mohamad

A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique.


2013 ◽  
Vol 459 ◽  
pp. 228-231 ◽  
Author(s):  
Hao Yang ◽  
Song Wu

Electroencephalogram (EEG) is generally used in Brain-Computer Interface (BCI) applications to measure the brain signals. However, the multichannel EEG signals characterized by unrelated and redundant features will deteriorate the classification accuracy. This paper presents a method based on common spatial pattern (CSP) for feature extraction and support vector machine with genetic algorithm (SVM-GA) as a classifier, the GA is used to optimize the kernel parameters setting. The proposed algorithm is performed on data set Iva of BCI Competition III. Results show that the proposed method outperforms the conventional linear discriminant analysis (LDA) in average classification performance.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2018 ◽  
Author(s):  
Linxing Jiang ◽  
Andrea Stocco ◽  
Darby M. Losey ◽  
Justin A. Abernethy ◽  
Chantel S. Prat ◽  
...  

ABSTRACTWe present BrainNet which, to our knowledge, is the first multi-human non-invasive direct brain-to-brain interface for collaborative problem solving. The interface combines electroencephalography (EEG) to record brain signals and transcranial magnetic stimulation (TMS) to deliver information noninvasively to the brain. The interface allows three human subjects to collaborate and solve a task using direct brain-to-brain communication. Two of the three subjects are designated as “Senders” whose brain signals are decoded using real-time EEG data analysis. The decoding process extracts each Sender’s decision about whether to rotate a block in a Tetris-like game before it is dropped to fill a line. The Senders’ decisions are transmitted via the Internet to the brain of a third subject, the “Receiver,” who cannot see the game screen. The Senders’ decisions are delivered to the Receiver’s brain via magnetic stimulation of the occipital cortex. The Receiver integrates the information received from the two Senders and uses an EEG interface to make a decision about either turning the block or keeping it in the same orientation. A second round of the game provides an additional chance for the Senders to evaluate the Receiver’s decision and send feedback to the Receiver’s brain, and for the Receiver to rectify a possible incorrect decision made in the first round. We evaluated the performance of BrainNet in terms of (1) Group-level performance during the game, (2) True/False positive rates of subjects’ decisions, and (3) Mutual information between subjects. Five groups, each with three human subjects, successfully used BrainNet to perform the Tetris task, with an average accuracy of 81.25%. Furthermore, by varying the information reliability of the Senders by artificially injecting noise into one Sender’s signal, we investigated how the Receiver learns to integrate noisy signals in order to make a correct decision. We found that like conventional social networks, BrainNet allows Receivers to learn to trust the Sender who is more reliable, in this case, based solely on the information transmitted directly to their brains. Our results point the way to future brain-to-brain interfaces that enable cooperative problem solving by humans using a “social network” of connected brains.


2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


2021 ◽  
pp. 2150048
Author(s):  
Hamidreza Namazi ◽  
Avinash Menon ◽  
Ondrej Krejcar

Our eyes are always in search of exploring our surrounding environment. The brain controls our eyes’ activities through the nervous system. Hence, analyzing the correlation between the activities of the eyes and brain is an important area of research in vision science. This paper evaluates the coupling between the reactions of the eyes and the brain in response to different moving visual stimuli. Since both eye movements and EEG signals (as the indicator of brain activity) contain information, we employed Shannon entropy to decode the coupling between them. Ten subjects looked at four moving objects (dynamic visual stimuli) with different information contents while we recorded their EEG signals and eye movements. The results demonstrated that the changes in the information contents of eye movements and EEG signals are strongly correlated ([Formula: see text]), which indicates a strong correlation between brain and eye activities. This analysis could be extended to evaluate the correlation between the activities of other organs versus the brain.


2019 ◽  
Vol 63 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Negin Manshouri ◽  
Temel Kayikcioglu

Abstract Despite the development of two- and three-dimensional (2D&3D) technology, it has attracted the attention of researchers in recent years. This research is done to reveal the detailed effects of 2D in comparison with 3D technology on the human brain waves. The impact of 2D&3D video watching using electroencephalography (EEG) brain signals is studied. A group of eight healthy volunteers with the average age of 31 ± 3.06 years old participated in this three-stage test. EEG signal recording consisted of three stages: After a bit of relaxation (a), a 2D video was displayed (b), the recording of the signal continued for a short period of time as rest (c), and finally the trial ended. Exactly the same steps were repeated for the 3D video. Power spectrum density (PSD) based on short time Fourier transform (STFT) was used to analyze the brain signals of 2D&3D video viewers. After testing all the EEG frequency bands, delta and theta were extracted as the features. Partial least squares regression (PLSR) and Support vector machine (SVM) classification algorithms were considered in order to classify EEG signals obtained as the result of 2D&3D video watching. Successful classification results were obtained by selecting the correct combinations of effective channels representing the brain regions.


2020 ◽  
Vol 10 (10) ◽  
pp. 3532
Author(s):  
Jesús Jaime Moreno Escobar ◽  
Oswaldo Morales Matamoros ◽  
Ricardo Tejeida Padilla ◽  
Ixchel Lina Reyes ◽  
Liliana Chanona Hernández ◽  
...  

This work presents the HSS-Cognitive project, which is a Healthcare Smart System that can be applied in measuring the efficiency of any therapy where neuronal interaction gives a trace whether the therapy is efficient or not, using mathematical tools. The artificial intelligence of the project underlies in the understanding of brain signals or Electroencephalogram (EEG) by means of the determination of the Power Spectral Density (PSD) over all the EEG bands in order to estimate how efficient was a therapy. Our project HSS-Cognitive was applied, recording the EEG signals from two patients treated for 8 min in a dolphin tank, measuring their activity in five experiments and for 6 min measuring their activity in a pool without dolphin in four experiments. After applying our TEA (Therapeutic Efficiency Assessment) metric for patient 1, we found that this patient had gone from having relaxation states regardless of the dolphin to attention states when the dolphin was presented. For patient 2, we found that he had maintained attention states regardless of the dolphin, that is, the DAT (Dolphin Assisted Therapy) did not have a significant effect in this patient, perhaps because he had a surgery last year in order to remove a tumor, having impact on the DAT effectiveness. However, patient 2 presented the best efficiency when doing physical therapy led by a therapist in a pool without dolphins around him. According to our findings, we concluded that our Brain-Inspired Healthcare Smart System can be considered a reliable tool for measuring the efficiency of a dolphin-assisted therapy and not only for therapist or medical doctors but also for researchers in neurosciences.


2020 ◽  
Vol 10 (9) ◽  
pp. 3036 ◽  
Author(s):  
Hongquan Qu ◽  
Yiping Shan ◽  
Yuzhe Liu ◽  
Liping Pang ◽  
Zhanli Fan ◽  
...  

Excessive mental workload will reduce work efficiency, but low mental workload will cause a waste of human resources. It is very significant to study the mental workload status of operators. The existing mental workload classification method is based on electroencephalogram (EEG) features, and its classification accuracy is often low because the channel signals recorded by the EEG electrodes are a group of mixed brain signals, which are similar to multi-source mixed speech signals. It is not wise to directly analyze the mixed signals in order to distinguish the feature of EEG signals. In this study, we propose a mental workload classification method based on EEG independent components (ICs) features, which borrows from the blind source separation (BSS) idea of mixed speech signals. This presented method uses independent component analysis (ICA) to obtain pure signals, i.e., ICs. The energy features of ICs are directly extracted for classifying the mental workload, since this method directly uses ICs energy features for feature extraction. Compared with the existing solution, the proposed method can obtain better classification results. The presented method might provide a way to realize a fast, accurate, and automatic mental workload classification.


Sign in / Sign up

Export Citation Format

Share Document