EXPERIMENTAL INVESTIGATION OF AXIAL COMPRESSIVE STRENGTH OF LIGHTWEIGHT FOAMED CONCRETE WITH DIFFERENT ADDITIVES

2016 ◽  
Vol 78 (5) ◽  
Author(s):  
M. A. Othuman Mydin

This paper focuses on experimental study to investigate the effects of different additives on axial compressive strength of lightweight foamed concrete (LFC). The additives used are pulverized fuel ash, wood ash, silica fume, palm oil fuel ash, polypropylene fibre, coconut fibre and steel fibre. These additives have different abilities that contribute positive outcomes to the properties of LFC. Pozzolanic materials and fibres were used as additives to be associated with plain LFC mixtures to improve its mechanical properties. Coir fibre recorded the highest compressive strength in 7 days compared to other additives and the control sample. Coir fibre of 0.4% (CF 0.4) reached highest strength in 180 days without allowing other additives to overcome its strength. The more the inclusion of fibres, the higher the strength obtained due to its low cellulose content, and high percentage and large diameter of lignin. The short length fibres hold the particles stronger.

2016 ◽  
Vol 78 (5) ◽  
Author(s):  
Md Azree Othuman Mydin

This research investigates the potential of natural and synthetic fibres on flexural strength of foamcrete mortar. The are 7 different types of fibres had been used such as pulverized fuel ash, wood ash, silica fume, palm oil fuel ash, polypropylene fibre, coconut fibre and steel fibre. These natural and synthetic additives have different abilities that contribute positive outcomes to the properties of foamcrete mortar. Pozzolanic materials and fibres were used as additives to be included with control foamcrete mortar mixtures in order to enhance its flexural properties. From the overall analysis, it has been confirmed that coir fibre recorded the highest flexural strength in 7 days compared to other additives and the control sample. Coir fibre of 0.4% reached highest strength in 180 days without allowing other additives to overcome its overall flexural strength. It should be pointed out that, the more the addition of fibres in the base mix, the higher the strength obtained due to its low cellulose content.


2015 ◽  
Vol 747 ◽  
pp. 230-233 ◽  
Author(s):  
Shankar Ganesan ◽  
Md Azree Othuman Mydin ◽  
Mohd Yazid Mohd Yunos ◽  
Mohd Nasrun Mohd Nawi

This paper will focus on experimental investigation to observe the effects of different densities and additives on the thermal properties of foamed concrete by means of Hot Disk Thermal Constant Analyzer, so as to obtain a few fundamental thermal properties for prediction of its fire resistance performance. For this study, samples of three different densities of 700kg/m3, 1000kg/m3 and 1400kg/m3 and various additives were investigated to study the effects of densities and additives on the thermal properties of foamed concrete. The additives used in this research were pulverized fuel ash (PFA), silica fume, palm oil fuel ash (POFA), wood ash, polypropylene fibre, steel fibre and coir fibre. It should be pointed out that the lowest density of foamed concrete (700kg/m3) has provided best thermal insulation properties due to large amount of pores and high percentage of air entrapped because air is poorest conductor of heat than solid and liquid. Also, foamed concrete with coir fibre achieved lowest thermal conductivity because it possess high heat resistance due to its large percentage of hemicellulose and lignin and exhibited high heat capacity as well due to the formation of uniform pores and voids in foamed concrete.


Author(s):  
Ashfaque Ahmed Jhatial ◽  
Wan Inn Goh ◽  
Samiullah Sohu ◽  
Sajjad Ali Mangi ◽  
Aamir Khan Mastoi

This study was performed to investigate the thermal and mechanical properties of foamed concrete when supplementary cementitious materials (SCMs) are utilized. Sustainable foamed concrete of 1800 kg/m3 dry density was prepared by incorporating Palm Oil Fuel Ash (POFA) ranging from 30 % to 35 % and Eggshell Powder (ESP) from 5 % to 15 % as SCMs. It was found that the combined utilization of POFA and ESP in the foamed concrete produced favorable results by reducing the thermal conductivity up to 42.68 % compared to the control sample, thus enhanced thermal insulating property of foamed concrete. This study confirmed that recycling and reusing of POFA and ESP are possible in foamed concrete which could be used for non-structural applications where thermal insulating is required.


Author(s):  
Mohamad Hairi Osman ◽  
◽  
Suraya Hani Adnan ◽  
Nurul Izlin Mazlin ◽  
Wan Amizah Wan Jusoh ◽  
...  

This paper investigates the stress strain behaviour of concrete containing Palm Oil Fuel Ash and Expanded Polystyrene, axial compressive strength, tensile strength and modulus of elasticity. EPS-POFA concrete was prepared by substituting fine aggregates with EPS beads and cement replaced with POFA by 10%, 20% and 30%. Results of this study showed that EPS-POFA concrete exhibited low axial compressive strength, peak strain, tensile strength and elastic modulus when the EPS and POFA contents in concrete increased. However, the decrease in axial compressive strength of concretes with containing 10 to 20% EPS and POFA are suitable amount and acceptable to be applied on building structure as per stated in America Concrete Institute 318 with minimum specified compressive strength for structural concrete is 2500 psi (17 MPa). While, the failure of EPS-POFA concrete under axial compression gradually occurred and the concretes were able to retain the load after failure without full collapse. The slope of stress-strain curve of concretes with containing EPS and POFA was lower than that of normal concrete, demonstrating that the normal concrete more brittleness that EPS-POFA concretes.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2014 ◽  
Vol 70 (5) ◽  
Author(s):  
Jamo Usman Hassan ◽  
Mohamad Zaky Noh ◽  
Zainal Arifin Ahmad

The increasing amount of disposed palm oil fuel ash (POFA) from palm oil industries has recently attracted significant attention for an alternative sustainable application. This paper presents the effects of the addition of a treated POFA on porcelain in terms of bending and compressive strength, as well as weight composition. POFA obtained from a palm oil mill was treated via sieving, grinding and heating at a temperature of 600°C for 90 minutes in order to the remove unburnt carbon and to improve the silica content of the POFA. Pellets made with various proportions of porcelain and POFA were fabricated and sintered at a temperature of 1200°C. The results reveal that the maximum bending strength and the compressive strength occurred at 8 wt% addition of POFA, Porcelain containing POFA has about 7% weight reduction compared with normal porcelain.  


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Reza Hodjati ◽  
Hossein Aslani ◽  
Iman Faridmehr ◽  
A. S. M. Abdul Awal ◽  
Ziba Kazemi

Prepacked aggregate concrete (PAC) is a type of concrete that is placed in two stages where the coarse aggregates are first placed inside the formworks and then the grout is pumped from underneath through a manual pump. Grout properties including density, grout consistency, bleeding, and compressive strength are of great importance in PAC. Such properties could be improved by application of pozzolanic materials like palm oil fuel ash. This paper is aimed at finding the most optimum percentage of POFA replacement by weight of cement. It was concluded that 30% POFA replacement yielded the most optimum results.


Author(s):  
Amun Amri ◽  
Gilang Fathurrahman ◽  
Ahmad Ainun Najib ◽  
Ella Awaltanova ◽  
Aman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document