Geometry and topology of the space of Kähler metrics on singular varieties
2018 ◽
Vol 154
(8)
◽
pp. 1593-1632
◽
Keyword(s):
Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.
Hamiltonian constructions of Kähler-Einstein metrics and Kähler metrics of constant scalar curvature
1991 ◽
Vol 136
(2)
◽
pp. 309-326
◽
Keyword(s):
2016 ◽
Vol 2016
(721)
◽
Keyword(s):
2019 ◽
Vol 2019
(751)
◽
pp. 27-89
◽
2015 ◽
Vol 203
(3)
◽
pp. 973-1025
◽
2016 ◽
Vol 165
(16)
◽
pp. 3043-3083
◽