scholarly journals Brauer groups and Galois cohomology of commutative ring spectra

2021 ◽  
Vol 157 (6) ◽  
pp. 1211-1264
Author(s):  
David Gepner ◽  
Tyler Lawson

In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $\infty$ -categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$ , we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $\pi _0(E)$ , recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $\mathbb {Z}/8\times \mathbb {Z}/2$ . Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$ -algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$ -algebra with the same coefficient ring as $\mathrm {End}_{KO}(KU)$ . This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$ , previously studied by Mathew and Stojanoska.

2018 ◽  
Vol 18 (4) ◽  
pp. 707-758 ◽  
Author(s):  
Dmitri Pavlov ◽  
Jakob Scholbach

This paper sets up the foundations for derived algebraic geometry, Goerss–Hopkins obstruction theory, and the construction of commutative ring spectra in the abstract setting of operadic algebras in symmetric spectra in an (essentially) arbitrary model category. We show that one can do derived algebraic geometry a la Toën–Vezzosi in an abstract category of spectra. We also answer in the affirmative a question of Goerss and Hopkins by showing that the obstruction theory for operadic algebras in spectra can be done in the generality of spectra in an (essentially) arbitrary model category. We construct strictly commutative simplicial ring spectra representing a given cohomology theory and illustrate this with a strictly commutative motivic ring spectrum representing higher order products on Deligne cohomology. These results are obtained by first establishing Smith’s stable positive model structure for abstract spectra and then showing that this category of spectra possesses excellent model-theoretic properties: we show that all colored symmetric operads in symmetric spectra valued in a symmetric monoidal model category are admissible, i.e., algebras over such operads carry a model structure. This generalizes the known model structures on commutative ring spectra and $\text{E}_{\infty }$-ring spectra in simplicial sets or motivic spaces. We also show that any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories of algebras. For example, this extends the familiar strictification of $\text{E}_{\infty }$-rings to commutative rings in a broad class of spectra, including motivic spectra. We finally show that operadic algebras in Quillen equivalent categories of spectra are again Quillen equivalent. This paper is also available at arXiv:1410.5699v2.


2004 ◽  
Vol 56 (6) ◽  
pp. 1237-1258 ◽  
Author(s):  
Akitaka Kishimoto

AbstractWe are concerned with a unital separable nuclear purely infinite simple C*-algebra A satisfying UCT with a Rohlin flow, as a continuation of [12]. Our first result (which is independent of the Rohlin flow) is to characterize when two central projections in A are equivalent by a central partial isometry. Our second result shows that the K-theory of the central sequence algebra A′ ∩ Aω (for an ω ∈ βN\N) and its fixed point algebra under the flow are the same (incorporating the previous result). We will also complete and supplement the characterization result of the Rohlin property for flows stated in [12].


2018 ◽  
Vol 168 (3) ◽  
pp. 435-454 ◽  
Author(s):  
BJØRN IAN DUNDAS ◽  
AYELET LINDENSTRAUSS ◽  
BIRGIT RICHTER

AbstractWe propose topological Hochschild homology as a tool for measuring ramification of maps of structured ring spectra. We determine second order topological Hochschild homology of the p-local integers. For the tamely ramified extension of the map from the connective Adams summand to p-local complex topological K-theory we determine the relative topological Hochschild homology and show that it detects the tame ramification of this extension. We show that the complexification map from connective topological real to complex K-theory shows features of a wildly ramified extension. We also determine relative topological Hochschild homology for some quotient maps with commutative quotients.


2019 ◽  
Vol 351 ◽  
pp. 761-803 ◽  
Author(s):  
Tasos Moulinos
Keyword(s):  

2012 ◽  
Vol 64 (2) ◽  
pp. 368-408 ◽  
Author(s):  
Ralf Meyer ◽  
Ryszard Nest

AbstractWe define the filtrated K-theory of a C*-algebra over a finite topological spaceXand explain how to construct a spectral sequence that computes the bivariant Kasparov theory overXin terms of filtrated K-theory.For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a spaceXwith four points that have isomorphic filtrated K-theory without being KK(X)-equivalent. For this spaceX, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.


Author(s):  
George Szeto ◽  
Yuen-Fat Wong

AbstractThe quaternion algebra of degree 2 over a commutative ring as defined by S. Parimala and R. Sridharan is generalized to a separable cyclic extension B[j] of degree n over a noncommutative ring B. A characterization of such an extension is given, and a relation between Azumaya algebras and Galois extensions for B[j] is also obtained.


Sign in / Sign up

Export Citation Format

Share Document