scholarly journals Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

Author(s):  
Omar Alcover Firpi ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 53-67
Author(s):  

In Vietnam, drought is one of the natural disasters caused by high temperatures and lack of precipitation, especially with El Nino and the global warming phenomenon. It affects directly environmental, economical, social issueproblems, and the lives of humans. Many methods have been used to assess drought, andin which remote sensing indices are considered the most commonly used tool today. They are used to analyze spatio-temporal distribution of drought conditions and identify drought severity. Especially with the launch of Google Earth Engine (GEE) - a cloud-based platform for geospatial analysis, it is easy to access high-performance computing resources for processing multi-temporal satellite data online. With the GEE platform, we focus on writing and running scripts with the indicators suitable for evaluating drought phenomenon, instead of calculating on software and downloading remote sensing imagery with large size. In this study, we collected 26 Landsat 8 images in the dry season in 2019 (from April to July) in Tay Hoa district, Phu Yen – a region in the South Central Coast of Vietnam where agricultural drought occurs frequently. wWe assessed the distribution of drought conditions in the dry season in 2019 in Tay Hoa district, Phu Yen – a region in the South Central Coast of Vietnam where agricultural drought occurs frequently by using a drought index (VHI index – Vegetation Health Index) produced from Landsat satellite data in the GEE platform. The study results indicated that the drought (from mild to severe) concentrated in the North of the region, corresponding to high surface temperature and NDVI low or NDVI moderate values. VHI maps were visually compared with the drought map of the South Central Coast and the Central Highlands. In general, the results also reflect the the method’s reliability and can be used to support the managers to plan policies, making long-term plans to cope with climate change in the future at Tay Hoa in particular and other regions in general.


2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


2021 ◽  
Vol 13 (4) ◽  
pp. 787
Author(s):  
Lei Zhou ◽  
Ting Luo ◽  
Mingyi Du ◽  
Qiang Chen ◽  
Yang Liu ◽  
...  

Machine learning has been successfully used for object recognition within images. Due to the complexity of the spectrum and texture of construction and demolition waste (C&DW), it is difficult to construct an automatic identification method for C&DW based on machine learning and remote sensing data sources. Machine learning includes many types of algorithms; however, different algorithms and parameters have different identification effects on C&DW. Exploring the optimal method for automatic remote sensing identification of C&DW is an important approach for the intelligent supervision of C&DW. This study investigates the megacity of Beijing, which is facing high risk of C&DW pollution. To improve the classification accuracy of C&DW, buildings, vegetation, water, and crops were selected as comparative training samples based on the Google Earth Engine (GEE), and Sentinel-2 was used as the data source. Three classification methods of typical machine learning algorithms (classification and regression trees (CART), random forest (RF), and support vector machine (SVM)) were selected to classify the C&DW from remote sensing images. Using empirical methods, the experimental trial method, and the grid search method, the optimal parameterization scheme of the three classification methods was studied to determine the optimal method of remote sensing identification of C&DW based on machine learning. Through accuracy evaluation and ground verification, the overall recognition accuracies of CART, RF, and SVM for C&DW were 73.12%, 98.05%, and 85.62%, respectively, under the optimal parameterization scheme determined in this study. Among these algorithms, RF was a better C&DW identification method than were CART and SVM when the number of decision trees was 50. This study explores the robust machine learning method for automatic remote sensing identification of C&DW and provides a scientific basis for intelligent supervision and resource utilization of C&DW.


2018 ◽  
Vol 10 (12) ◽  
pp. 2027 ◽  
Author(s):  
Itiya Aneece ◽  
Prasad Thenkabail

As the global population increases, we face increasing demand for food and nutrition. Remote sensing can help monitor food availability to assess global food security rapidly and accurately enough to inform decision-making. However, advances in remote sensing technology are still often limited to multispectral broadband sensors. Although these sensors have many applications, they can be limited in studying agricultural crop characteristics such as differentiating crop types and their growth stages with a high degree of accuracy and detail. In contrast, hyperspectral data contain continuous narrowbands that provide data in terms of spectral signatures rather than a few data points along the spectrum, and hence can help advance the study of crop characteristics. To better understand and advance this idea, we conducted a detailed study of five leading world crops (corn, soybean, winter wheat, rice, and cotton) that occupy 75% and 54% of principal crop areas in the United States and the world respectively. The study was conducted in seven agroecological zones of the United States using 99 Earth Observing-1 (EO-1) Hyperion hyperspectral images from 2008–2015 at 30 m resolution. The authors first developed a first-of-its-kind comprehensive Hyperion-derived Hyperspectral Imaging Spectral Library of Agricultural crops (HISA) of these crops in the US based on USDA Cropland Data Layer (CDL) reference data. Principal Component Analysis was used to eliminate redundant bands by using factor loadings to determine which bands most influenced the first few principal components. This resulted in the establishment of 30 optimal hyperspectral narrowbands (OHNBs) for the study of agricultural crops. The rest of the 242 Hyperion HNBs were redundant, uncalibrated, or noisy. Crop types and crop growth stages were classified using linear discriminant analysis (LDA) and support vector machines (SVM) in the Google Earth Engine cloud computing platform using the 30 optimal HNBs (OHNBs). The best overall accuracies were between 75% to 95% in classifying crop types and their growth stages, which were achieved using 15–20 HNBs in the majority of cases. However, in complex cases (e.g., 4 or more crops in a Hyperion image) 25–30 HNBs were required to achieve optimal accuracies. Beyond 25–30 bands, accuracies asymptote. This research makes a significant contribution towards understanding modeling, mapping, and monitoring agricultural crops using data from upcoming hyperspectral satellites, such as NASA’s Surface Biology and Geology mission (formerly HyspIRI mission) and the recently launched HysIS (Indian Hyperspectral Imaging Satellite, 55 bands over 400–950 nm in VNIR and 165 bands over 900–2500 nm in SWIR), and contributions in advancing the building of a novel, first-of-its-kind global hyperspectral imaging spectral-library of agricultural crops (GHISA: www.usgs.gov/WGSC/GHISA).


Author(s):  
Di Yang

A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.


Author(s):  
Di Yang

A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.


2019 ◽  
Vol 11 (20) ◽  
pp. 2389 ◽  
Author(s):  
Deodato Tapete ◽  
Francesca Cigna

Illegal excavations in archaeological heritage sites (namely “looting”) are a global phenomenon. Satellite images are nowadays massively used by archaeologists to systematically document sites affected by looting. In parallel, remote sensing scientists are increasingly developing processing methods with a certain degree of automation to quantify looting using satellite imagery. To capture the state-of-the-art of this growing field of remote sensing, in this work 47 peer-reviewed research publications and grey literature are reviewed, accounting for: (i) the type of satellite data used, i.e., optical and synthetic aperture radar (SAR); (ii) properties of looting features utilized as proxies for damage assessment (e.g., shape, morphology, spectral signature); (iii) image processing workflows; and (iv) rationale for validation. Several scholars studied looting even prior to the conflicts recently affecting the Middle East and North Africa (MENA) region. Regardless of the method used for looting feature identification (either visual/manual, or with the aid of image processing), they preferred very high resolution (VHR) optical imagery, mainly black-and-white panchromatic, or pansharpened multispectral, whereas SAR is being used more recently by specialist image analysts only. Yet the full potential of VHR and high resolution (HR) multispectral information in optical imagery is to be exploited, with limited research studies testing spectral indices. To fill this gap, a range of looted sites across the MENA region are presented in this work, i.e., Lisht, Dashur, and Abusir el Malik (Egypt), and Tell Qarqur, Tell Jifar, Sergiopolis, Apamea, Dura Europos, and Tell Hizareen (Syria). The aim is to highlight: (i) the complementarity of HR multispectral data and VHR SAR with VHR optical imagery, (ii) usefulness of spectral profiles in the visible and near-infrared bands, and (iii) applicability of methods for multi-temporal change detection. Satellite data used for the demonstration include: HR multispectral imagery from the Copernicus Sentinel-2 constellation, VHR X-band SAR data from the COSMO-SkyMed mission, VHR panchromatic and multispectral WorldView-2 imagery, and further VHR optical data acquired by GeoEye-1, IKONOS-2, QuickBird-2, and WorldView-3, available through Google Earth. Commonalities between the different image processing methods are examined, alongside a critical discussion about automation in looting assessment, current lack of common practices in image processing, achievements in managing the uncertainty in looting feature interpretation, and current needs for more dissemination and user uptake. Directions toward sharing and harmonization of methodologies are outlined, and some proposals are made with regard to the aspects that the community working with satellite images should consider, in order to define best practices of satellite-based looting assessment.


2020 ◽  
Author(s):  
Laura Bindereif ◽  
Tobias Rentschler ◽  
Martin Batelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
...  

<p>Land cover information plays an essential role for resource development, environmental monitoring and protection. Amongst other natural resources, soils and soil properties are strongly affected by land cover and land cover change, which can lead to soil degradation. Remote sensing techniques are very suitable for spatio-temporal mapping of land cover mapping and change detection. With remote sensing programs vast data archives were established. Machine learning applications provide appropriate algorithms to analyse such amounts of data efficiently and with accurate results. However, machine learning methods require specific sampling techniques and are usually made for balanced datasets with an even training sample frequency. Though, most real-world datasets are imbalanced and methods to reduce the imbalance of datasets with synthetic sampling are required. Synthetic sampling methods increase the number of samples in the minority class and/or decrease the number in the majority class to achieve higher model accuracy. The Synthetic Minority Over-Sampling Technique (SMOTE) is a method to generate synthetic samples and balance the dataset used in many machine learning applications. In the middle Guadalquivir basin, Andalusia, Spain, we used random forests with Landsat images from 1984 to 2018 as covariates to map the land cover change with the Google Earth Engine. The sampling design was based on stratified random sampling according to the CORINE land cover classification of 2012. The land cover classes in our study were arable land, permanent crops (plantations), pastures/grassland, forest and shrub. Artificial surfaces and water bodies were excluded from modelling. However, the number of the 130 training samples was imbalanced. The classes pasture (7 samples) and shrub (13 samples) show a lower number than the other classes (48, 47 and 16 samples). This led to misclassifications and negatively affected the classification accuracy. Therefore, we applied SMOTE to increase the number of samples and the classification accuracy of the model. Preliminary results are promising and show an increase of the classification accuracy, especially the accuracy of the previously underrepresented classes pasture and shrub. This corresponds to the results of studies with other objectives which also see the use of synthetic sampling methods as an improvement for the performance of classification frameworks.</p>


Sign in / Sign up

Export Citation Format

Share Document