Experimental Investigation of Large Particle Slurry Transport in Vertical Pipes With Pulsating Flow

2021 ◽  
Author(s):  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Hiroki Sasagawa
1987 ◽  
Vol 109 (1) ◽  
pp. 35-39
Author(s):  
N. Kundu ◽  
G. P. Peterson

The ability of water to hold solid particulate matter in suspension, together with its fluidity, make it a desirable medium for use in the transportation of solid material in slurry pipelines. However in some areas, the vast amount of water required for this type of system may not be readily available. Presented here is a discussion of the technical and economic advantages of a slurry transport system, in which foam is used as the transport medium. Also included are the results of an experimental investigation designed to determine the feasibility and transport capacity of such a system. The results of the experimental investigation indicate that the use of foam in the transport of solid particulate material is technically sound, economically attractive and environmentally acceptable.


Author(s):  
Satoru Takano ◽  
Sotaro Masanobu ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Motoki Araki ◽  
...  

Subsea minerals exist in the deep water within Japanese exclusive economic zone. Development of slurry pump passing large particles is required for lifting ore. In design of slurry pump, it is significant to estimate the pressure loss in a riser pipe for large particle slurry transport. Therefore the authors have been studied the slurry flow model for large particle slurry transport. In addition, the authors developed the model for the static pipe including the inclined configurations. Since the lifting pipe will be oscillated due to the connected ship motion and VIV (Vortex Induced Vibration), the authors conducted the scaled model experiment to investigate the effects of pipe oscillation on the pressure loss. The model scale was 1/8. Alumina beads and glass beads were used as solid particles in the experiment. The pipe was vertical, and oscillated in horizontal or vertical direction. The experimental results showed that the horizontal and vertical oscillation had little influence on the static pressure loss in most of the experimental conditions. However the influence was observed for the horizontally oscillating pipe in the low slurry velocity and short oscillation period condition. On the other hand, the significant fluctuation components of pressure loss and flow rate were observed in vertically oscillating pipe. The results also indicated that the density of slurry and amplitude of oscillation had influence on the fluctuation components of pressure loss and flow rate but the particle diameters had little influence on them.


Author(s):  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Hiroki Sasagawa

Abstract For subsea mining, it is important to predict the pressure loss in oscillating pipes with pulsating flow for the safe and reliable operation of ore lifting. In the present paper, the authors focused on the pulsating internal flow in static vertical pipe and carried out slurry transport experiment to investigate the effects of flow fluctuation on the pressure loss. The alumina beads and glass beads were used as the solid particles in the experiment, and the fluctuating periods and amplitudes of pulsating water flow were varied. The time-averaged pressure losses calculated by the prediction method for the steady flow proposed in the past by the authors agreed well with the experimental ones. As for the fluctuating component of pressure loss, the calculation results using the quasi-steady expression of a mixture model were compared with the experimental data. The calculated results were different from experimental ones for alumina beads of which densities are almost same as those of the ores of Seafloor Massive Sulfides. It suggests that the expression is insufficient to predict the pressure loss for heavy solid particles. The calculated ones, however, provided those in the safety side. On the other hand, the calculated results for light solid particles such as glass beads agreed well with the experimental ones. It means that the expression would be applicable to the prediction of pressure loss for the mining of manganese nodules which are lighter than the ores of Seafloor Massive Sulfides.


Sign in / Sign up

Export Citation Format

Share Document