Application of Suction Line Heat Exchanger on Adsorption Refrigeration System

2004 ◽  
Vol 126 (1) ◽  
pp. 671-673 ◽  
Author(s):  
Wen Wang ◽  
Tianfei Qu ◽  
Zhonghua Li ◽  
Ruzhu Wang

Quantitative thermodynamic analysis demonstrates that an adsorption refrigeration cycle could get higher cycle performance by employing a suction line heat exchanger (SLHX). Low temperature evaporated gas not only helps to cool down the adsorbent, it further increases the cooling output by recovering heat and cooling the condensed liquid. Experimental data also verifies that a SLHX recovers heat from the evaporated gas and helps the evaporator to provide higher cooling capacity.

2010 ◽  
Vol 18 (02) ◽  
pp. 141-147 ◽  
Author(s):  
HAE WON JUNG ◽  
WONJAE YOON ◽  
HYUN JOON CHUNG ◽  
YONGCHAN KIM

In this study, the performance characteristics of a bypass two-circuit refrigeration cycle designed for refrigerators were investigated in a bench scale refrigeration system. The bypass two-circuit refrigeration cycle with R600a operates in two modes of refrigerator/freezer-mode (RF-mode) and freezer only-mode (F only-mode) by switching refrigerant flow path. The performance of the bypass two-circuit refrigeration cycle was measured by varying the condenser capacity, the length of the suction line heat exchanger (SLHX), and the refrigerant charge amount with adoption of the refrigerant storage vessel. The COPs of the bypass two-circuit refrigeration cycle at RF-mode and F only-mode increased by 10% and 17%, respectively, with the increase of the condenser capacity and SLHX length. In addition, the COP of the system at F only-mode increased by 10% with the adoption of the refrigerant storage vessel.


2003 ◽  
Vol 24 (6) ◽  
pp. 71-78 ◽  
Author(s):  
S. Waszkiewicz ◽  
S. Jenkins ◽  
H. Saidani-Scott ◽  
M. Tierney

2002 ◽  
Vol 124 (3) ◽  
pp. 283-290 ◽  
Author(s):  
T. F. Qu ◽  
W. Wang ◽  
R. Z. Wang

Mass recovery can play an important role to better the performance of adsorption refrigeration cycles. Cooling capacity can be significantly increased with mass recovery process. The coefficient of performance (COP) of the activated carbon/ammonia adsorption refrigeration cycle might be increased or decreased with mass recovery process due to different working conditions. The advantage is that its COP is not sensitive to the variation of heat capacity of adsorber metal and condensing and evaporating temperature. The cycle with mass and heat recovery has a relatively high COP.


1999 ◽  
Author(s):  
D. Boewe ◽  
J. Yin ◽  
Y. C. Park ◽  
C. W. Bullard ◽  
P. S. Hrnjak

2014 ◽  
Vol 953-954 ◽  
pp. 119-122
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

s. In this paper, a new adsorption refrigeration system is designed and calculated. In this system, there are two beds, two condensers and two evaporators. The working principle is explained and specified in this paper. And mathematical models are also set up and through calculation, the system performance is analyzed and evaluated.Theory study results demonstrate that the new system nearly has the same cooling capacity as conventional system and this kind of system can be adopted in actual use.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3975
Author(s):  
Zhongbao Liu ◽  
Banghua Zhao ◽  
Yong Huang ◽  
Xin Qi ◽  
Fengfei Lou

An MIL-101(Cr) powder material was successfully prepared using the hydrothermal synthesis method, and then the original MIL-101(Cr) was combined with different mass fractions of CaCl2 using the immersion method to obtain a MIL-101(Cr)/CaCl2 composite material. The physical properties of the adsorbent were determined by X-ray powder diffraction (XRD), an N2 adsorption desorption isotherm test, and thermogravimetric analysis (TG). The water vapor adsorption performance of the metal-organic frameworks MOFs was tested with a gravimetric water vapor adsorption instrument to analyze its water vapor adsorption mechanism. Based on the SIMULINK platform in the MATLAB software, a simulation model of the coefficient of performance (COP) and cooling capacity of the adsorption refrigeration system was established, and the variation trends of the COP and cooling capacity of the adsorption refrigeration system under different evaporation/condensation/adsorption/desorption temperatures was theoretically studied. MIL101-(Cr)/CaCl2-20% was selected as the adsorption material in the adsorption refrigeration system through the physical characterization of composite materials with different CaCl2 concentrations by means of adsorption water vapor test experiments. A closed adsorption system performance test device was built based on the liquid level method. The cooling power per unit and adsorbent mass (COP and SCP) of the system were tested at different evaporation temperatures (288 K/293 K/298 K); the adsorption temperature was 298 K, the condensation temperature was 308 K, and the desorption temperature was 353 K. The experimental results showed that COP and SCP increased with the increase in the evaporation temperature. When the evaporation temperature was 298 K, the level of COP was 0.172, and the level of SCP was 136.9 W/kg. The COP and SCP of the system were tested at different adsorption temperatures (293 K/298 K/303 K); the evaporation temperature was 288 K, the condensation temperature was 308 K, and the desorption temperature was 353 K. The experimental results showed that the levels of COP and SCP decreased with the increase in the adsorption temperature. When the adsorption temperature was 293 K, the level of COP was 0.18, and the level of SCP was 142.4 W/kg.


Sign in / Sign up

Export Citation Format

Share Document