evaporation temperature
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 47)

H-INDEX

16
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 69
Author(s):  
Sixuan Wei ◽  
Rujie Peng ◽  
Shilong Bian ◽  
Wei Han ◽  
Biao Xiao ◽  
...  

Chitosan-based nanostructures have been widely applied in biomineralization and biosensors owing to its polycationic properties. The creation of chitosan nanostructures with controllable morphology is highly desirable, but has met with limited success yet. Here, we report that nanostructured chitosan tartaric sodium (CS-TA-Na) is simply synthesized in large amounts from chitosan tartaric ester (CS-TA) hydrolyzed by NaOH solution, while the CS-TA is obtained by dehydration-caused crystallization. The structures and self-assembly properties of CS-TA-Na are carefully characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), a scanning electron microscope (SEM) and a polarizing optical microscope (POM). As a result, the acquired nanostructured CS-TA-Na, which is dispersed in an aqueous solution 20–50 nm in length and 10–15 nm in width, shows both the features of carboxyl and amino functional groups. Moreover, morphology regulation of the CS-TA-Na nanostructures can be easily achieved by adjusting the solvent evaporation temperature. When the evaporation temperature is increased from 4 °C to 60 °C, CS-TA-Na nanorods and nanosheets are obtained on the substrates, respectively. As far as we know, this is the first report on using a simple solvent evaporation method to prepare CS-TA-Na nanocrystals with controllable morphologies.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012083
Author(s):  
E M Starinskaya ◽  
N B Miskiv ◽  
M K Lei ◽  
V V Terekhov

Abstract In this work, unique biphilic substrates were prepared with a sharp spatial gradient of the contact angle of wetting. Experimental studies of the process of evaporation of liquid droplets lying on the structured surfaces have been carried out. In the experiment, the dynamics of the temperature of an evaporating droplet was compared depending on its orientation in space. It was found that suspended droplets of 0.1 wt % Fe3O4 nanofluid have a higher evaporation temperature and a higher evaporation rate as compared to sessile droplets.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 6003
Author(s):  
Min-Ju Jeon

This study evaluates the performance of an R744/R404A cascade refrigeration system (CRS) with internal heat exchangers (IHE) in supermarkets. R744 is used as the refrigerant in a low-temperature cycle, and R404A is used as the refrigerant in a high-temperature cycle. In previous studies, there are many studies including theoretical performance analysis of the CRS. However, experimental studies on the CRS are lacking, and experimental research on the R744/R404A system with an IHE is scarce. Therefore, this study provides basic data for optimal refrigeration system design by experimentally evaluating the results of modifying various parameters. The operating parameters considered in this study include subcooling and superheating, condensing and evaporating temperature, cascade evaporation temperature, and IHE efficiency in the R744 low- and R404A high-temperature cycle. The main results are summarized as follows: (1) By applying the results of this study, energy efficiency is achieved by optimizing the overall coefficient of performance (COP) of the CRS, and the refrigerant charge of the R404A cycle is minimized and economic efficiency is also obtained, enabling operation and maintenance as an environment-friendly system. (2) When designing the CRS, finding the cascade evaporation temperature that has the optimum and maximum COP according to the refrigerant combination should be considered with the highest priority.


2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Quanhong Li ◽  
Zhongyan Mu ◽  
Manlelan Luo ◽  
Anguo Huang ◽  
Shengyong Pang

This paper reports a mechanism understanding how to reduce the solder joint failure phenomenon in the laser spot micro-welding process of ultra-thin steel sheets. An optimization method to improve solder joint service life is proposed. In this study, the time-dependent dynamic behaviors of the keyhole and the weld pool are simulated, and the temperatures in the keyhole of two different laser pulse waveforms are compared. The results show that laser energy attenuation mode (LEAM) can only obtain shallow weld depth because of the premature decay of the laser power of waveform, resulting in the laser beam that cannot be concentrated in the keyhole. The temperature inside the keyhole of LEAM fluctuates significantly, which shows a downward trend. Due to the existence of the peak power of waveform in laser energy continuous mode (LECM), the large angle of inclination of the wall of the keyhole inside the melt pool is more conducive to the multiple reflections of the laser beam in the keyhole and increases the absorption rate of the laser energy by the base material, resulting in the “keyhole effect”. But the temperature in the keyhole gradually rises, close to the evaporation temperature. A method combining LEAM and LECM to improve the solder joint service life by optimizing the temperature in the keyhole indirectly by adjusting the peak power of the laser pulse waveform is proposed in this study. The experimental results show that the weld depth can be optimized from 0.135 mm to 0.291 mm, and the tensile strength can be optimized from 88 MPa to 288 MPa. The bonding performance between the upper and lower plates is effectively improved. It can reach the required weld depth in a short time and improve the welding efficiency of the laser spot micro-welding process. The simulation results show that the temperature inside the keyhole is well optimized below the evaporation temperature of the material, which can avoid the violent evaporation of the welding process and keep the whole welding process in a stable state. By optimizing the laser pulse waveform, the temperature inside the keyhole can reach 3300 K, and it is always in a stable state than before optimization. The stable temperature inside the keyhole can help to reduce violent oscillation and spattering of the molten pool and improve welding efficiency and joint life. The research can help provide effective process guidance for the optimization of different laser pulse waveforms in the micro-welding process.


2021 ◽  
Vol 20 (38) ◽  
pp. 51-66
Author(s):  
Carlos Eduardo Rondón Almeyda ◽  
Monica Andrea Botero Londoño ◽  
Rogelio Ospina Ospina

Currently, there is an interest within the scientific community in thin-film solar cells with a Kesterite (Cu2ZnSnS4) type absorber layer, since they report a theoretical efficiency greater than 32 %. The synthesis of Kesterites by evaporation has allowed for efficiencies at the laboratory level of 11.6 %. Although these are good results, the design of the evaporation chamber and the distribution of the electrodes is essential to control synthesis parameters and evaporate each precursor in the corresponding stage. This project seeks to design an evaporation chamber that can achieve a vacuum of 10-5 mbar, increase the deposition surface and avoid each precursor evaporation in a non-corresponding stage. This last objective was studied using Comsol multiphysics R. (licensed product) software, with the adequate disposition of metallic precursors (zinc, copper, and tin) determined by analyzing heat distribution. It was concluded that the lower the evaporation temperature of the precursor, the smaller the height of the copper electrode in the system. This is because, with a lower height the concentration of heat in the container is lower.


Author(s):  
Phan Thi Thu Huong ◽  
Hoang Mai Hong ◽  
Lai Ngoc Anh

This paper presents the study results on the effect of the chilled water temperature on the coefficient of performance (COP) of an experimental air-cooled chiller. The measuring sensors and instrument were calibrated, and the uncertainty of the measuring temperature and pressure were evaluated. The uncertainty of measured temperature and pressure at 95% confidence level is 0.12 °C and 1.4 kPa, respectively. The isentropic compression efficiency and the COP of the air-cooled chiller operating at a condensation temperature of 48.05 °C and evaporation temperature of 3.17 °C are 63% and 2.69, respectively. The chilled water temperature has a significant influence on evaporation pressure and the COP of the chiller. If the temperature of the air entering the condenser of the chiller is maintained at 35 °C, the COP of the chiller increases from 2.55 to 2.89 when the temperature of the chiller water increases only 4 K, from 8 °C to 12 °C.


2021 ◽  
Vol 8 (3) ◽  
pp. 509-514
Author(s):  
V. Yo. Labay ◽  
◽  
V. Yu. Yaroslav ◽  
O. M. Dovbush ◽  
A. Ye. Tsizda ◽  
...  

Nowadays, the use of heat pumps (HP) of air split-conditioners in air conditioning and heating systems of small industrial, public and residential facilities is becoming more common. It is known that the nominal heat capacity of HP of air split-conditioners is given in catalogs or reference literature under standard outdoor temperature conditions, namely: outdoor air temperature +7oС, indoor air temperature +21oС. At the same time, manufacturers of air split-conditioners do not ensure that, regardless of the size of heating capacity, all air split-conditioners have the same internal temperature conditions, namely: the evaporation temperature of the refrigerant and its condensation temperature. In this case, the thermodynamic efficiency, which can be best assessed by the exergetic output-input ratio (OIR) of different heating capacity of HP of air split-conditioners, is different; this, in our opinion, is incorrect. However, today there is a lack of mathematical models of bringing the operation of air split-conditioners HP to the similar internal temperature conditions, which will allow us to obtain the same exergetic OIR for different heating capacity of HP. To create the mathematical model of bringing the operation of HP of air split-conditioners to the equal internal temperature conditions, we have proposed them, namely: the evaporation temperature of the refrigerant +0.7oC and its condensation temperature +40oC. Taking these temperatures on the basis of the heat balances of the HP evaporator and HP condenser of air split-conditioners, we obtained the dependences for calculating air flow rates on the evaporator and condenser, which respectively maintain the proposed temperatures.


Sign in / Sign up

Export Citation Format

Share Document