Solar Fixation of Atmospheric Nitrogen

2004 ◽  
Vol 126 (1) ◽  
pp. 626-632 ◽  
Author(s):  
Michael Epstein ◽  
Rudi Bertocchi ◽  
Jacob Karni

The thermal fixation of atmospheric nitrogen is explored, using a recently developed concept of a particle-seeded solar receiver. The thermodynamics and the kinetics of the formation of nitric oxide (NO) in air at temperatures of about 2300 K are analyzed, and the required residence time and the time to reach the steady state of the reaction between nitrogen and oxygen are calculated. The novel particle-seeded receiver concept is briefly described. The adaptation of the particle-seeded receiver to the fixation reaction in terms of heating rate of the air and residence time is validated based on previous test results and complementary calculations. A proposed method where the solar receiver/reactor is simultaneously coupled with power production, using the exhausted hot air from the reactor to generate electricity, is described. This concept can definitely increase the economical benefit of the process and, thus, its potential attractiveness. Some illustrative figures for a commercial size system are provided.

2019 ◽  
Author(s):  
Matthias Schiedel ◽  
Herwin Daub ◽  
Aymelt Itzen ◽  
Manfred Jung

Recently, we have discovered the sirtuin rearranging ligands (SirReals) as a novel class of highly potent and selective inhibitors of the NAD+-dependent lysine deacetylase Sirt2. In previous studies, using a biotinylated SirReal analogue in combination with biolayer interferometry, we observed a slow dissociation rate of the inhibitor-enzyme complex, which had been postulated to be the key to the high affinity and selectivity of SirReals. However, for the attachment of biotin to the SirReal core, we introduced a triazole as a linking moiety, which was shown by X-ray co-crystallography to interact with Arg97 of the cofactor binding loop. This study now is directed to answer the question, whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. Therefore, we used the novel label-free switchSENSE® technology, based on electrically switchable DNA nanolevers, to validate that the long residence time of the SirReals is caused by the core scaffold.<br>


2019 ◽  
Author(s):  
Matthias Schiedel ◽  
Herwin Daub ◽  
Aymelt Itzen ◽  
Manfred Jung

Recently, we have discovered the sirtuin rearranging ligands (SirReals) as a novel class of highly potent and selective inhibitors of the NAD+-dependent lysine deacetylase Sirt2. In previous studies, using a biotinylated SirReal analogue in combination with biolayer interferometry, we observed a slow dissociation rate of the inhibitor-enzyme complex, which had been postulated to be the key to the high affinity and selectivity of SirReals. However, for the attachment of biotin to the SirReal core, we introduced a triazole as a linking moiety, which was shown by X-ray co-crystallography to interact with Arg97 of the cofactor binding loop. This study now is directed to answer the question, whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. Therefore, we used the novel label-free switchSENSE® technology, based on electrically switchable DNA nanolevers, to validate that the long residence time of the SirReals is caused by the core scaffold.<br>


Author(s):  
Douglas Spangler ◽  
Hans Blomberg ◽  
David Smekal

Abstract Background The novel coronavirus disease 2019 (Covid-19) pandemic has affected prehospital care systems across the world, but the prehospital presentation of affected patients and the extent to which prehospital care providers are able to identify them is not well characterized. In this study, we describe the presentation of Covid-19 patients in a Swedish prehospital care system, and asses the predictive value of Covid-19 suspicion as documented by dispatch and ambulance nurses. Methods Data for all patients with dispatch, ambulance, and hospital records between January 1–August 31, 2020 were extracted. A descriptive statistical analysis of patients with and without hospital-confirmed Covid-19 was performed. In a subset of records beginning from April 14, we assessed the sensitivity and specificity of documented Covid-19 suspicion in dispatch and ambulance patient care records. Results A total of 11,894 prehospital records were included, of which 481 had a primary hospital diagnosis code related to-, or positive test results for Covid-19. Covid-19-positive patients had considerably worse outcomes than patients with negative test results, with 30-day mortality rates of 24% vs 11%, but lower levels of prehospital acuity (e.g. emergent transport rates of 14% vs 22%). About half (46%) of Covid-19-positive patients presented to dispatchers with primary complaints typically associated with Covid-19. Six thousand seven hundred seventy-six records were included in the assessment of predictive value. Sensitivity was 76% (95% CI 71–80) and 82% (78–86) for dispatch and ambulance suspicion respectively, while specificities were 86% (85–87) and 78% (77–79). Conclusions While prehospital suspicion was strongly indicative of hospital-confirmed Covid-19, based on the sensitivity identified in this study, prehospital suspicion should not be relied upon as a single factor to rule out the need for isolation precautions. The data provided may be used to develop improved guidelines for identifying Covid-19 patients in the prehospital setting.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 509 ◽  
Author(s):  
Steffen Glöckner ◽  
Khang Ngo ◽  
Björn Wagner ◽  
Andreas Heine ◽  
Gerhard Klebe

The fluorination of lead-like compounds is a common tool in medicinal chemistry to alter molecular properties in various ways and with different goals. We herein present a detailed study of the binding of fluorinated benzenesulfonamides to human Carbonic Anhydrase II by complementing macromolecular X-ray crystallographic observations with thermodynamic and kinetic data collected with the novel method of kinITC. Our findings comprise so far unknown alternative binding modes in the crystalline state for some of the investigated compounds as well as complex thermodynamic and kinetic structure-activity relationships. They suggest that fluorination of the benzenesulfonamide core is especially advantageous in one position with respect to the kinetic signatures of binding and that a higher degree of fluorination does not necessarily provide for a higher affinity or more favorable kinetic binding profiles. Lastly, we propose a relationship between the kinetics of binding and ligand acidity based on a small set of compounds with similar substitution patterns.


2017 ◽  
Vol 9 (8) ◽  
pp. 1705-1712
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this study, a dual-layered polarization and frequency reconfigurable microstrip antenna is proposed based on sequential mechanical axial rotation of the circular metal radiator. The antenna can be reconfigured among three different polarized modes, including the linear polarization (LP), left-handed circular polarization and right-handed circular polarization in the band from 4.68 to 4.80 GHz (2.53%). The resonance frequency of the proposed antenna with the same LP mode could also be tuned in the range from 4.70 to 5.03 GHz by mechanical rotation of the breach-truncated circular metal radiator as well as the circular substrate. Furthermore, the polarization characteristic and frequency can be reconfigured, respectively, as the circular radiator is taken an axial rotation with an angle of 360°. The presented antenna in the four different states has been numerically simulated and fabricated for the experimental measurement, the investigated characteristics includes the port reflection coefficient, axial ratio, radiation pattern, gain, and the radiation efficiency. The simulated and test results agreed well with each other. This antenna enriches the novel mechanical reconfigurable method except for the popular electrical approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Yang Liu ◽  
Shuhan Wang ◽  
Peng Dong ◽  
Xiangyang Xu

An electric oil pump (EOP) was integrated into the hydraulic system and an automatic transmission (AT) mechanical oil pump (MOP) was downsized. These processes were performed to combine a start-stop function with the AT and further improve the transmission efficiency. Furthermore, this study established a dynamics model of power loss and leakage of an 8-speed AT; a flow-based control algorithm of the EOP was then developed to realize the start-stop function and support the MOP to meet the flow requirement of the system. Based on a driving simulation method, sizes of the MOP and EOP that ensured optimal fuel economy were selected. A control strategy for the starting clutch was also developed to minimize the starting delay of the test vehicle. A test environment on a rig and prototype vehicle was established to verify the feasibility of the proposed control strategies. The test results indicated that the transmission functioned favorably with the novel two-pump system presented, and a quick and smooth starting performance was achieved when the engine was restarted. The findings in this study are extremely valuable for forward designs of an AT for realizing start-stop function and improving efficiency.


Author(s):  
G. Jeevarathinam ◽  
R. Pandiselvam ◽  
T. Pandiarajan ◽  
P. Preetha ◽  
T. Krishnakumar ◽  
...  

Author(s):  
Amir Hossein Mirzabe ◽  
◽  
Gholam Reza Chegini ◽  

Sunflower seeds and oil in food and agricultural processing are of great importance. Dried sunflower petals are the most important parts of the sunflower plant that have economic value. Thin-layer drying experiments were performed in a laboratory scale hot-air dryer. The results indicated that with increasing drying temperature and air velocity, time of drying reduces and in most cases, the logarithmic model had the best performance for modeling the drying kinetics. The calculated values of the effective moisture diffusivity varied from 3.16627 ×10-13 to 1.32860 ×10-12 m2 s-1 and the values of the activation energy for air velocities of 0.4 and 0.8 m s-1 were equal to 51.21 and 42.3 kJ mol-1, respectively. Also, to verify whether the production and sale of sunflower petals can be cost effective, economic analysis was done. This analysis showed that drying of sunflower petals is profitable process and the generated revenue can even surpass the revenue from the sale of sunflower seeds.


Sign in / Sign up

Export Citation Format

Share Document