Simulation and Analysis of Rigid/Foil Electrolytic In-Process Dressing (ELID) Systems for Grinding

2004 ◽  
Vol 126 (3) ◽  
pp. 565-570 ◽  
Author(s):  
Zhenqi Zhu ◽  
Xiaohua Wang ◽  
Siva Thangam

The fluid flow problem in a traditional electrolytic in-process dressing (ELID) system is analyzed and solved numerically. The predicted mean velocity profiles in the dressing zone show flow patterns that are in good agreement with the mean velocity distributions for plane laminar/turbulent Couette flows observed in the experiments. The computational results reveal that insufficient electrolyte supply rate is the cause of the failure of the traditional ELID system for high-speed grinding. Results also show that to obtain effective high-speed ELID grinding, a consistent high inlet electrolyte velocity or supply rate is required. For the foil ELID system, governing equations describing the fluid flow in the dressing zone and the foil elastic deformation are formulated. Analytical solution based on unidirectional flow model for the problem is presented and effects of wheel surface speed and foil tension on the performance of the dressing system are discussed. It is shown that the foil ELID system has the potential to be effective for high-speed grinding with low electrolyte supply rates. The results will be useful to the development of new machine systems and processes for high-speed grinding.

Author(s):  
J. Kulman ◽  
D. Gray ◽  
S. Sivanagere ◽  
S. Guffey

Heat transfer and flow characteristics have been determined for a single-phase rectangular loop thermosiphon. The plane of the loop was vertical, and tests were performed with in-plane tilt angles ranging from 3.6° CW to 4.2° CCW. Velocity profiles were measured in one vertical leg of the loop using both a single-component Laser Doppler Velocimeter (LDV), and a commercial Particle Image Velocimeter (PIV) system. The LDV data and PIV data were found to be in good agreement. The measured average velocities were approximately 2–2.5 cm/s at an average heating rate of 70 W, and were independent of tilt angle. Significant RMS fluctuations of 10–20% of the mean velocity were observed in the test section, in spite of the laminar or transitional Reynolds numbers (order of 700, based on the hydraulic diameter). These fluctuations have been attributed to vortex shedding from the upstream temperature probes and mitre bends, rather than to fully developed turbulence. Animations of the PIV data clearly show these large scale unsteady flow patterns. Multiple steady state flow patterns were not observed.


2016 ◽  
Vol 797 ◽  
Author(s):  
Dan Li ◽  
Scott T. Salesky ◽  
Tirtha Banerjee

The mean velocity profile (MVP) in thermally stratified atmospheric surface layers (ASLs) deviates from the classic logarithmic form. A theoretical framework was recently proposed (Katulet al.Phys. Rev. Lett., vol. 107, 2011, 268502) to link the MVP to the spectrum of turbulence and was found to successfully predict the MVP for unstable stratification. However, the theory failed to reproduce the MVP in stable conditions (Saleskyet al.Phys. Fluids, vol. 25, 2013, 105101), especially when${\it\zeta}>0.2$(where${\it\zeta}$is the atmospheric stability parameter). In the present study, it is demonstrated that this shortcoming is due to the failure to identify the appropriate length scale that characterizes the size of momentum transporting eddies in the stable ASL. Beyond${\it\zeta}\approx 0.2$(near where the original theory fails), the Ozmidov length scale becomes smaller than the distance from the wall$z$and hence is a more stringent constraint for characterizing the size of turbulent eddies. An expression is derived to connect the Ozmidov length scale to the normalized MVP (${\it\phi}_{m}$), allowing${\it\phi}_{m}$to be solved numerically. It is found that the revised theory produces a prediction of${\it\phi}_{m}$in good agreement with the widely used empirical Businger–Dyer relation and two experimental datasets in the stable ASL. The results here demonstrate that the behaviour of${\it\phi}_{m}$in the stable ASL is closely linked to the size of momentum transporting eddies, which can be characterized by the Ozmidov scale under mildly to moderately stable conditions ($0.2<{\it\zeta}<1-2$).


1979 ◽  
Vol 90 (3) ◽  
pp. 531-539 ◽  
Author(s):  
L. Bogusławski ◽  
Cz. O. Popiel

This note presents measurements of radial and axial distributions of mean velocity, turbulent intensities and kinetic energy as well as radial distributions of the turbulent shear stress in the initial region of a turbulent air jet issuing from a long round pipe into still air. The pipe flow is transformed relatively smoothly into a jet flow. In the core subregion the mean centre-line velocity decreases slightly. The highest turbulence occurs at an axial distance of about 6d and radius of (0·7 to 0·8)d. On the axis the highest turbulent kinetic energy appears at a distance of (7·5 to 8·5)d. Normalized distributions of the turbulent quantities are in good agreement with known data on the developed region of jets issuing from short nozzles.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012026
Author(s):  
Lisa Lampunio ◽  
Yu Duan ◽  
Raad Issa ◽  
Matthew D. Eaton

Abstract This paper investigates the effects of different inlet velocities on thermal stripping phenomena within a T-junction. The computational flow domain is modelled using the Improved Delayed Detached Eddy Simulation (IDDES) turbulence model implemented within the commercial CFD code STAR-CCM+ 12.04. The computational model is validated against the OECD-NEA-Vattenfall T-junction Benchmark data. The influence of flat and fully developed inlet velocity profiles is then assessed. The results are in good agreement with the experimental data. The different inlet velocity profiles have a non-negligible effect on the mean wall temperature. The mean velocity shows lower sensitivity to changes in inlet velocity profiles, whose influence is confined mainly to the recirculation zone near the T-junction.


2020 ◽  
Vol 21 (6) ◽  
pp. 1311-1331
Author(s):  
Kalimur Rahman ◽  
Firat Y. Testik

AbstractThis study investigates the shapes and fall speeds of freezing and frozen raindrops through field observations using an instrument called the high-speed optical disdrometer (HOD) that we developed recently. Our field observations showed that while the shapes of all of the observed freezing raindrops and a portion of the frozen raindrops (39% of the frozen raindrops that are larger than 1.0 mm in volume equivalent diameter D) resemble the shapes of warm raindrops, majority of frozen raindrops (61% of the frozen raindrops with D > 1.0 mm) exhibited a distinct feature such as a spicule, bulge, cavity, or aggregation. Field observations of axis ratios (i.e., ratio of the vertical to horizontal chord) and fall speeds were compared with the predictions of available models. Separate empirical axis ratio parameterizations were developed for the freezing and frozen raindrops using the HOD field observations and extensions to an available shape model were also incorporated. For the fall speeds of freezing and frozen raindrops, field observations demonstrated a good agreement with the predictions of the available parameterizations. Frozen raindrops showed a larger scatter of fall speeds around the mean fall speed of a given drop size than those of the freezing raindrops due to the shape variety among the frozen raindrops with the aforementioned distinct features. The drag coefficients for the observed hydrometeors were compared with the predictions of the available drag coefficient models. Separate “drag coefficient–Reynolds number” relationships for freezing and frozen raindrops were developed.


2002 ◽  
Vol 124 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Ruth S. Ochia ◽  
Randal P. Ching

Hydraulic resistance (HR) was measured for ten intact human lumbar vertebrae to further understand the mechanisms of fluid flow through porous bone. Oil was forced through the vertebral bodies under various volumetric flow rates and the resultant pressure was measured. The pressure-flow relationship for each specimen was linear. Therefore, HR was constant with a mean of 2.22±1.45kPa*sec/ml. The mean permeability of the intact vertebral bodies was 4.90×10−10±4.45×10−10m2. These results indicate that this methodology is valid for whole bone samples and enables the exploration of the effects of HR on the creation of high-speed fractures.


1967 ◽  
Vol 27 (2) ◽  
pp. 253-272 ◽  
Author(s):  
W. C. Reynolds ◽  
W. G. Tiederman

The Orr-Sommerfeld stability problem has been studied for velocity profiles appropriate to turbulent channel flow. The intent was to provide an evaluation of Malkus's theory that the flow assumes a state of maximum dissipation, subject to certain constraints, one of which is that the mean velocity profile is marginally stable. Dissipation rates and neutral stability curves were obtained for a representative two-parameter family of velocity profiles. Those in agreement with experimental profiles were found to be stable; the marginally stable profile of greatest dissipation was not in good agreement with experiments. An explanation for the apparent success of Malkus's theory is offered.


2009 ◽  
Vol 76-78 ◽  
pp. 49-54
Author(s):  
Shao Hui Yin ◽  
Kun Tang ◽  
Xiao Min Sheng ◽  
Yong Jian Zhu ◽  
Y.F. Fan

This paper reports a systematic investigation of high speed grinding of hard-to-machining of titanium alloys. The ground surfaces were characterized using scanning electron microscopy, and the effects of different grinding parameters on roughness were discussed. A numerical model was established to predict surface roughness based on the evolutionary neural network optimized by Genetic Algorithm (GA). The modeled results were in good agreement with the experimental results.


1. The properties of gases which depend on the velocity of agitation of molecules and the lengths of their free paths may easily be expressed in terms of the mean velocity of agitation and the mean free path when certain assumptions are made in order to simplify the investigations. The expressions thus found on the principles of the kinetic theory are in good agreement with the experimental results in most cases, but the formulæ that have been obtained for the coefficient of inter-diffusion of gases and the velocity of particles acted on by an external force are not so satisfactory. The equations of motion of two inter-diffusing gases have been given by Maxwell, and it may be shown from these that the exact value of the ratio of the coefficient of diffusion of ions to the velocity under unit electric force is N e /II, where N is the number of molecules per cubic centimetre of a gas at pressure II, and e the charge on an ion. The method adopted by Maxwell is perfectly general, there are no assumptions made as to the distribution of the velocities of agitation, and no particular definition of a collision of a free path is involved, so that there can be little doubt as to the accuracy of the result.


1991 ◽  
Vol 113 (4) ◽  
pp. 616-619 ◽  
Author(s):  
R. A. Antonia ◽  
D. K. Bisset ◽  
J. Kim

The mean velocity profile across a fully developed turbulent duct flow is obtained from an eddy viscosity relation combined with an empirical outer region wake function. Results are in good agreement with experiments and with direct numerical simulations in the same flow at two Reynolds numbers. In particular, the near-wall trend of the Reynolds shear stress and its variation with Reynolds number are similar to those of the simulations. The eddy viscosity method is more accurate than previous mixing length or implicit function methods.


Sign in / Sign up

Export Citation Format

Share Document