Preliminary Design of Tubular Composite Structures Using Netting Theory and Composite Degradation Factors

1995 ◽  
Vol 117 (4) ◽  
pp. 390-394 ◽  
Author(s):  
B. W. Tew

Tubular products and process vessels built using fiber-reinforced composite materials provide significant advantages in applications that require corrosion resistance, high strength, and light weight. A design approach based on netting theory is presented which enables engineers to develop preliminary structural designs for these structures using composite materials. The integration of creep, cyclic loading, and environmental degradation factors into initial design calculations is also discussed and illustrated.

2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


2011 ◽  
Vol 471-472 ◽  
pp. 939-944 ◽  
Author(s):  
Khudhayer J. Jadee ◽  
A.R. Othman

Fiber reinforced composite structures are widely used in the aerospace, aircraft, civil and automotive applications due to their high strength-to-weight and stiffness-to-weight ratios and these applications require joining composite either to composite or to metal. There are three main methods for joining composite structures namely, bonding, mechanically fastened or a combination of the two. Bolted joint are preferred in structures where the disassembly is required for the purpose of maintenance and repair. Due to the stress concentration around the holes, bolted joints often represents the weakest part in the structure, and therefore it is important to design them safely. A review on the study of bolted joints in fiber reinforced composite structure is presented. It was found that the behavior of bolted joints in composite structure is affected by many factors, such as geometry, joint material, clamping–load provided by the bolts, ply orientations, etc. Accordingly, various researches have been conducted on the analyses of stress distribution, failure prediction, and strength properties of bolted joint both experimentally and numerically. Accurate prediction of stresses in bolted joints is essential for reliable design of the whole structure; if it is not optimally designed, premature and unexpected failures may be occurred.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6709-6718 ◽  
Author(s):  
Nikhil Khatavkar ◽  
Balasubramanian K.

This review systematically throws light on the fiber reinforced composite materials and existing technologies employed for the fabrication of high strength, low dielectric loss sandwich radomes for supersonic aircrafts.


2020 ◽  
Vol 70 (3) ◽  
pp. 24-28
Author(s):  
Aleksandra Jelić ◽  
Danijela Kovačević ◽  
Marina Stamenović ◽  
Slaviša Putić

High strength, high toughness, and low weight make fiber-reinforced composite materials important as an alternative to traditional materials. Due to their application in different fields, such as construction, aviation, marine, automotive technologies and biomedicine, their production has increased leading to the increasement of composite wastes. New technologies for managing fiber-reinforced composite wastes have been developed to solve the issue of end-of-life of these materials. The aim of this paper is to emphasize recycling technologies used for fiber reinforced composites, and their potential reusage.


Author(s):  
I Gede Putu Agus Suryawan ◽  
NPG Suardana ◽  
IN Suprapta Winaya ◽  
IWB Suyasa

The purpose of this study is to compare the hardness of glass fiber reinforced composite materials with the hardness of netted fiber-reinforced composite materials. Glass fiber is a commercial fiber that has been used in various industries while nettle fiber is a natural fiber that is more environmentally friendly. Composite material has several advantages, namely the form that can be adjusted, high strength, lightweight and resistant to corrosion. Nettle plants are plants that have strong fibers in the bark. In this study, nettle composites were made with variations in the weight fractions of 10%, 15%, and 20%. Hardness testing used the Shore D Durometer. The results of the hardness value of glass fiber composites with weight fractions of 10%, 15%, and 20% are 82.4 Shore D, 84.5 Shore D, and 86.5 Shore D, show an increase in stable hardness because the glass fiber factor is already commercial, the fiber strength is evenly distributed. The hardness values of nettle fiber composites with fractions of 10%, 15%, and 20% are 81.6 Shore D, 85 Shore D, and 86.6 Shore D, the hardness value of each nettle composite increases with the addition of fiber weight fraction but is unstable due to the strength factor of each nettle single fiber uneven. Furthermore, with the right treatment, nettle fiber can replace glass fiber.


2011 ◽  
Vol 332-334 ◽  
pp. 1773-1776
Author(s):  
Yun Xing Liang ◽  
Li Chen ◽  
Hai Wen Liu ◽  
Hua Wu Liu

With the development of modern technology, fiberglass composite materials are widely applied. The advantages of fiberglass reinforced composite materials are high strength and light weight. In order to produce a prefabricated fiberglass composite, a machine chart was drafted for weaving the 3D fiberglass fabric with five layers. The obtained five-layer 3D fabrics were composited with polyurethane matrix. Afterwards, the performance of the prefabricated composites was tested and the optimal ratio of fiberglass to matrix was determined by statistical analysis.


2018 ◽  
Author(s):  
Karla Rosa Reyes ◽  
Karla Rosa Reyes ◽  
Adriana Pavia Sanders ◽  
Lee Taylor Massey ◽  
Corinne Hagan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document