Robust Computed Torque Schemes for Mechanical Manipulators: Nonadaptive Versus Adaptive

1991 ◽  
Vol 113 (2) ◽  
pp. 324-327 ◽  
Author(s):  
Y. H. Chen

We consider the tracking control problem of mechanical manipulators in the presence of uncertainty. Two classes of control algorithms are proposed. If the possible bound of the uncertainty is known, a class of nonadaptive robust computed torque control schemes is used. The control guarantees the tracking error to be confined within a specified region after a finite time. If the bound of uncertainty is unknown, a class of adaptive robust computed torque control schemes is used. The control guarantees the tracking error to converge to zero. Both classes of controls are continuous. No statistical information on the uncertainty is ever assumed.

2011 ◽  
Vol 58-60 ◽  
pp. 2392-2395
Author(s):  
Tong Ying Guo ◽  
Jie Jia Li ◽  
Hai Chen Wang

In this paper, in order to achieve high-precision trajectory control of grinding robot, the method of computed torque control is proposed based on PD feedback, a single-joint robot experimental platform was built, position and velocity tracking experiment is carried out with empty Load and load. Experimental results show that the method of computed torque based on PD feedback control has the characteristic of quick response speed and small position tracking error.


Author(s):  
Fabian Andres Lara-Molina ◽  
João Maurício Rosário ◽  
Didier Dumur ◽  
Philippe Wenger

This paper addresses the position tracking control application of a parallel robot using predictive control techniques. A Generalized Predictive Control strategy (GPC), which considers the linear dynamic model, is used to enhance the tracking position accuracy. The robustification of GPC against measurement noise and neglected dynamics using Youla parameterization is performed. A simulation of the orthoglide robot considering uncertainties related to geometrical and dynamic parameters, sensors noise and frictions is performed on two different trajectories. Finally, it is compared the ro-bustified GPC controller with the classical Computed Torque Control (CTC). The robustified GPC controller shows a better performance for high accelerations and it also reduces the effect of the noise in the control signal of the parallel robot.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Song ◽  
Yongjie Zhao ◽  
Chengwei Chen ◽  
Liang’an Zhang ◽  
Xinjian Lu

SUMMARY In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot dynamic model which is established via a virtual work principle. The control system of the robot comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed. Compared with the traditional CTC, the simulation results indicate that the control algorithm proposed in this study can not only enhance the anti-interference ability of the system but also improve the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.


Sign in / Sign up

Export Citation Format

Share Document